Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
3258 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ | 0.6388 | 0.8344 | 0.7656 | [M:[0.9571, 1.1287, 0.8713, 0.8251, 0.8251, 0.8713], q:[0.7393, 0.3036], qb:[0.4357, 0.4357], phi:[0.5214]] | [M:[[4, 4], [-12, -12], [12, 12], [-13, -1], [-1, -13], [12, 12]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{5}$, ${ }M_{4}$, ${ }M_{3}$, ${ }M_{6}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{1}M_{5}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}M_{6}$, ${ }M_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$ | ${}\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ | -1 | 2*t^2.218 + 2*t^2.475 + 2*t^2.614 + t^2.871 + t^3.129 + 2*t^3.782 + 3*t^4.178 + 3*t^4.436 + 4*t^4.693 + 4*t^4.832 + 3*t^4.95 + 6*t^5.089 + 3*t^5.228 + 4*t^5.347 + 2*t^5.485 + 2*t^5.743 - t^6. + 3*t^6.257 + 6*t^6.396 + 8*t^6.653 + 6*t^6.792 + 4*t^6.911 + 6*t^7.05 + 4*t^7.168 + 9*t^7.307 + 4*t^7.426 + 6*t^7.446 + 8*t^7.564 + 8*t^7.703 + 3*t^7.822 + 4*t^7.842 + 8*t^7.96 - t^8.079 + 3*t^8.099 - 4*t^8.218 + 8*t^8.357 - 6*t^8.475 - t^8.614 + 2*t^8.733 + 6*t^8.871 - t^4.564/y - (2*t^7.04)/y - t^7.178/y + t^7.436/y + (4*t^7.693)/y + (4*t^7.832)/y + (2*t^7.95)/y + (8*t^8.089)/y + t^8.228/y + (4*t^8.347)/y + (2*t^8.485)/y + (2*t^8.604)/y + (2*t^8.743)/y - t^4.564*y - 2*t^7.04*y - t^7.178*y + t^7.436*y + 4*t^7.693*y + 4*t^7.832*y + 2*t^7.95*y + 8*t^8.089*y + t^8.228*y + 4*t^8.347*y + 2*t^8.485*y + 2*t^8.604*y + 2*t^8.743*y | (g1^7*t^2.218)/g2^5 + (g2^7*t^2.218)/g1^5 + t^2.475/(g1*g2^13) + t^2.475/(g1^13*g2) + 2*g1^12*g2^12*t^2.614 + g1^4*g2^4*t^2.871 + t^3.129/(g1^4*g2^4) + (g1^5*t^3.782)/g2^7 + (g2^5*t^3.782)/g1^7 + (g1^22*t^4.178)/g2^2 + g1^10*g2^10*t^4.178 + (g2^22*t^4.178)/g1^2 + (g1^14*t^4.436)/g2^10 + g1^2*g2^2*t^4.436 + (g2^14*t^4.436)/g1^10 + (g1^6*t^4.693)/g2^18 + (2*t^4.693)/(g1^6*g2^6) + (g2^6*t^4.693)/g1^18 + 2*g1^19*g2^7*t^4.832 + 2*g1^7*g2^19*t^4.832 + t^4.95/(g1^2*g2^26) + t^4.95/(g1^14*g2^14) + t^4.95/(g1^26*g2^2) + (3*g1^11*t^5.089)/g2 + (3*g2^11*t^5.089)/g1 + 3*g1^24*g2^24*t^5.228 + (2*g1^3*t^5.347)/g2^9 + (2*g2^3*t^5.347)/g1^9 + 2*g1^16*g2^16*t^5.485 + 2*g1^8*g2^8*t^5.743 - t^6. + (g1^4*t^6.257)/g2^20 + t^6.257/(g1^8*g2^8) + (g2^4*t^6.257)/g1^20 + (g1^29*t^6.396)/g2^7 + 2*g1^17*g2^5*t^6.396 + 2*g1^5*g2^17*t^6.396 + (g2^29*t^6.396)/g1^7 + (2*g1^21*t^6.653)/g2^15 + (2*g1^9*t^6.653)/g2^3 + (2*g2^9*t^6.653)/g1^3 + (2*g2^21*t^6.653)/g1^15 + 2*g1^34*g2^10*t^6.792 + 2*g1^22*g2^22*t^6.792 + 2*g1^10*g2^34*t^6.792 + (g1^13*t^6.911)/g2^23 + (g1*t^6.911)/g2^11 + (g2*t^6.911)/g1^11 + (g2^13*t^6.911)/g1^23 + 2*g1^26*g2^2*t^7.05 + 2*g1^14*g2^14*t^7.05 + 2*g1^2*g2^26*t^7.05 + (g1^5*t^7.168)/g2^31 + t^7.168/(g1^7*g2^19) + t^7.168/(g1^19*g2^7) + (g2^5*t^7.168)/g1^31 + (3*g1^18*t^7.307)/g2^6 + 3*g1^6*g2^6*t^7.307 + (3*g2^18*t^7.307)/g1^6 + t^7.426/(g1^3*g2^39) + t^7.426/(g1^15*g2^27) + t^7.426/(g1^27*g2^15) + t^7.426/(g1^39*g2^3) + 3*g1^31*g2^19*t^7.446 + 3*g1^19*g2^31*t^7.446 + (3*g1^10*t^7.564)/g2^14 + (2*t^7.564)/(g1^2*g2^2) + (3*g2^10*t^7.564)/g1^14 + 4*g1^23*g2^11*t^7.703 + 4*g1^11*g2^23*t^7.703 + (g1^2*t^7.822)/g2^22 + t^7.822/(g1^10*g2^10) + (g2^2*t^7.822)/g1^22 + 4*g1^36*g2^36*t^7.842 + (g1^27*t^7.96)/g2^9 + 3*g1^15*g2^3*t^7.96 + 3*g1^3*g2^15*t^7.96 + (g2^27*t^7.96)/g1^9 - t^8.079/(g1^18*g2^18) + 3*g1^28*g2^28*t^8.099 - (2*g1^7*t^8.218)/g2^5 - (2*g2^7*t^8.218)/g1^5 + (g1^44*t^8.357)/g2^4 + g1^32*g2^8*t^8.357 + 4*g1^20*g2^20*t^8.357 + g1^8*g2^32*t^8.357 + (g2^44*t^8.357)/g1^4 - (3*t^8.475)/(g1*g2^13) - (3*t^8.475)/(g1^13*g2) + (g1^36*t^8.614)/g2^12 - 3*g1^12*g2^12*t^8.614 + (g2^36*t^8.614)/g1^12 + (g1^3*t^8.733)/g2^33 + (g2^3*t^8.733)/g1^33 + (2*g1^28*t^8.871)/g2^20 + (2*g1^16*t^8.871)/g2^8 - 2*g1^4*g2^4*t^8.871 + (2*g2^16*t^8.871)/g1^8 + (2*g2^28*t^8.871)/g1^20 - t^4.564/(g1^2*g2^2*y) - t^7.04/(g1^3*g2^15*y) - t^7.04/(g1^15*g2^3*y) - (g1^10*g2^10*t^7.178)/y + (g1^2*g2^2*t^7.436)/y + (g1^6*t^7.693)/(g2^18*y) + (2*t^7.693)/(g1^6*g2^6*y) + (g2^6*t^7.693)/(g1^18*y) + (2*g1^19*g2^7*t^7.832)/y + (2*g1^7*g2^19*t^7.832)/y + (2*t^7.95)/(g1^14*g2^14*y) + (4*g1^11*t^8.089)/(g2*y) + (4*g2^11*t^8.089)/(g1*y) + (g1^24*g2^24*t^8.228)/y + (2*g1^3*t^8.347)/(g2^9*y) + (2*g2^3*t^8.347)/(g1^9*y) + (2*g1^16*g2^16*t^8.485)/y + t^8.604/(g1^5*g2^17*y) + t^8.604/(g1^17*g2^5*y) + (2*g1^8*g2^8*t^8.743)/y - (t^4.564*y)/(g1^2*g2^2) - (t^7.04*y)/(g1^3*g2^15) - (t^7.04*y)/(g1^15*g2^3) - g1^10*g2^10*t^7.178*y + g1^2*g2^2*t^7.436*y + (g1^6*t^7.693*y)/g2^18 + (2*t^7.693*y)/(g1^6*g2^6) + (g2^6*t^7.693*y)/g1^18 + 2*g1^19*g2^7*t^7.832*y + 2*g1^7*g2^19*t^7.832*y + (2*t^7.95*y)/(g1^14*g2^14) + (4*g1^11*t^8.089*y)/g2 + (4*g2^11*t^8.089*y)/g1 + g1^24*g2^24*t^8.228*y + (2*g1^3*t^8.347*y)/g2^9 + (2*g2^3*t^8.347*y)/g1^9 + 2*g1^16*g2^16*t^8.485*y + (t^8.604*y)/(g1^5*g2^17) + (t^8.604*y)/(g1^17*g2^5) + 2*g1^8*g2^8*t^8.743*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
2745 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ | 0.6293 | 0.8168 | 0.7704 | [M:[0.9733, 1.0801, 0.9199, 0.7967, 0.7967], q:[0.7433, 0.2834], qb:[0.4599, 0.4599], phi:[0.5134]] | 2*t^2.23 + 2*t^2.39 + t^2.76 + t^2.92 + t^3.08 + t^3.24 + 2*t^3.77 + 3*t^4.3 + 3*t^4.46 + 4*t^4.62 + 3*t^4.78 + 2*t^4.99 + 4*t^5.15 + 4*t^5.31 + 2*t^5.47 + t^5.519 + 2*t^5.631 + t^5.679 + t^5.84 - t^4.54/y - t^4.54*y | detail |