Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46183 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ \phi_1^4$ + $ M_3\phi_1\tilde{q}_2^2$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ 0.6997 0.9172 0.7628 [X:[], M:[0.8275, 0.8261, 0.6927, 0.6725], q:[0.75, 0.4225], qb:[0.4239, 0.4036], phi:[0.5]] [X:[], M:[[1, 1], [-1, 0], [0, -2], [-1, -1]], q:[[0, 0], [-1, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_4$, $ M_3$, $ M_2$, $ q_2\tilde{q}_2$, $ M_1$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ \phi_1^2$, $ q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ M_4^2$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1$, $ M_3M_4$, $ M_3^2$, $ M_1M_4$, $ M_2M_4$, $ M_4q_2\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_2M_4$, $ M_4q_2\tilde{q}_2$, $ M_2M_3$, $ M_4q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ M_1M_3$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_3q_2\tilde{q}_1$, $ M_2^2$, $ M_2q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_1M_2$, $ \phi_1q_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1\tilde{q}_2^2$, $ M_1^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ \phi_1q_1\tilde{q}_1$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ M_4\phi_1^2$, $ \phi_1q_1q_2$, $ M_2q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_3\phi_1^2$, $ q_2^2\tilde{q}_1^2$, $ M_2\phi_1^2$, $ M_4q_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_1\phi_1^2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_1$, $ M_3q_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ q_1\tilde{q}_1\tilde{q}_2^2$ $M_4\phi_1q_2\tilde{q}_2$ -3 t^2.02 + t^2.08 + 4*t^2.48 + t^2.54 + t^3. + t^3.46 + t^3.98 + 2*t^4.03 + 2*t^4.04 + t^4.1 + t^4.16 + 4*t^4.5 + 5*t^4.56 + t^4.62 + 7*t^4.96 + 3*t^4.97 + 5*t^5.02 + 2*t^5.08 + 5*t^5.48 + 2*t^5.54 + 2*t^5.94 - 3*t^6. + 2*t^6.05 + t^6.06 + 2*t^6.11 + 2*t^6.12 + t^6.17 + t^6.23 + 3*t^6.46 + 4*t^6.51 + 7*t^6.52 + 2*t^6.53 + 4*t^6.57 + 4*t^6.58 + 3*t^6.63 + 2*t^6.64 + t^6.7 + 3*t^6.97 + 4*t^6.98 + 6*t^7.03 + 8*t^7.04 + 6*t^7.1 + 2*t^7.16 + 4*t^7.43 + 9*t^7.44 + 4*t^7.45 + 10*t^7.5 + 6*t^7.56 + 3*t^7.62 + 7*t^7.96 + 2*t^7.97 + t^8.01 + t^8.02 + 4*t^8.07 + t^8.09 + 3*t^8.13 + 2*t^8.19 + 2*t^8.2 + t^8.25 + t^8.31 + t^8.42 + t^8.43 - 13*t^8.48 - 2*t^8.49 + 8*t^8.53 - 4*t^8.54 + 6*t^8.59 + 9*t^8.6 + 4*t^8.65 + 4*t^8.66 + 3*t^8.71 + 2*t^8.72 + t^8.77 + 3*t^8.93 + t^8.94 + 6*t^8.99 - t^4.5/y - t^6.52/y - t^6.58/y - (2*t^6.98)/y + t^7.1/y + (4*t^7.5)/y + (5*t^7.56)/y + t^7.62/y + (5*t^7.96)/y + t^7.97/y + (7*t^8.02)/y + t^8.08/y + t^8.42/y + (6*t^8.48)/y - t^8.53/y + (2*t^8.54)/y - t^8.6/y - t^8.66/y + (4*t^8.94)/y - t^4.5*y - t^6.52*y - t^6.58*y - 2*t^6.98*y + t^7.1*y + 4*t^7.5*y + 5*t^7.56*y + t^7.62*y + 5*t^7.96*y + t^7.97*y + 7*t^8.02*y + t^8.08*y + t^8.42*y + 6*t^8.48*y - t^8.53*y + 2*t^8.54*y - t^8.6*y - t^8.66*y + 4*t^8.94*y t^2.02/(g1*g2) + t^2.08/g2^2 + (2*t^2.48)/g1 + 2*g1*g2*t^2.48 + t^2.54/g2 + t^3. + g2*t^3.46 + t^3.98/g1 + (2*t^4.03)/(g1^2*g2^2) + g1^2*t^4.04 + t^4.04/g2 + t^4.1/(g1*g2^3) + t^4.16/g2^4 + 2*t^4.5 + (2*t^4.5)/(g1^2*g2) + (3*t^4.56)/(g1*g2^2) + (2*g1*t^4.56)/g2 + t^4.62/g2^3 + (3*t^4.96)/g1^2 + 4*g2*t^4.96 + 3*g1^2*g2^2*t^4.97 + 2*g1*t^5.02 + (3*t^5.02)/(g1*g2) + (2*t^5.08)/g2^2 + (3*t^5.48)/g1 + 2*g1*g2*t^5.48 + (2*t^5.54)/g2 + (g2*t^5.94)/g1 + g1*g2^2*t^5.94 - 2*t^6. - g1^2*g2*t^6. + (2*t^6.05)/(g1^3*g2^3) + t^6.06/(g1*g2^2) + (2*t^6.11)/(g1^2*g2^4) + t^6.12/g2^3 + (g1^2*t^6.12)/g2^2 + t^6.17/(g1*g2^5) + t^6.23/g2^6 + (2*t^6.46)/g1^2 + g2*t^6.46 + (4*t^6.51)/(g1^3*g2^2) + 2*g1*t^6.52 + (5*t^6.52)/(g1*g2) + 2*g1^3*g2*t^6.53 + (4*t^6.57)/(g1^2*g2^3) + (3*t^6.58)/g2^2 + (g1^2*t^6.58)/g2 + (3*t^6.63)/(g1*g2^4) + (2*g1*t^6.64)/g2^3 + t^6.7/g2^5 + (3*t^6.97)/(g1^3*g2) + (3*t^6.98)/g1 + g1*g2*t^6.98 + (6*t^7.03)/(g1^2*g2^2) + 3*g1^2*t^7.04 + (5*t^7.04)/g2 + (4*t^7.1)/(g1*g2^3) + (2*g1*t^7.1)/g2^2 + (2*t^7.16)/g2^4 + (4*t^7.43)/g1^3 + (5*g2*t^7.44)/g1 + 4*g1*g2^2*t^7.44 + 4*g1^3*g2^3*t^7.45 + 3*t^7.5 + (5*t^7.5)/(g1^2*g2) + 2*g1^2*g2*t^7.5 + (4*t^7.56)/(g1*g2^2) + (2*g1*t^7.56)/g2 + (3*t^7.62)/g2^3 + (4*t^7.96)/g1^2 + 3*g2*t^7.96 + 2*g1^2*g2^2*t^7.97 + t^8.01/(g1^3*g2^2) + g1*t^8.02 + (3*t^8.07)/(g1^4*g2^4) + t^8.07/(g1^2*g2^3) + g1^4*t^8.09 + (2*t^8.13)/(g1^3*g2^5) + t^8.13/(g1*g2^4) + (2*t^8.19)/(g1^2*g2^6) + t^8.2/g2^5 + (g1^2*t^8.2)/g2^4 + t^8.25/(g1*g2^7) + t^8.31/g2^8 + (g2*t^8.42)/g1^2 + g1^2*g2^3*t^8.43 - (6*t^8.48)/g1 - 7*g1*g2*t^8.48 - 2*g1^3*g2^2*t^8.49 + (4*t^8.53)/(g1^4*g2^3) + (4*t^8.53)/(g1^2*g2^2) - g1^2*t^8.54 - (3*t^8.54)/g2 + (6*t^8.59)/(g1^3*g2^4) + (5*t^8.6)/(g1*g2^3) + (2*g1*t^8.6)/g2^2 + (2*g1^3*t^8.6)/g2 + (4*t^8.65)/(g1^2*g2^5) + (3*t^8.66)/g2^4 + (g1^2*t^8.66)/g2^3 + (3*t^8.71)/(g1*g2^6) + (2*g1*t^8.72)/g2^5 + t^8.77/g2^7 + (3*t^8.93)/g1^3 + (g2*t^8.94)/g1 + (6*t^8.99)/(g1^4*g2^2) - t^4.5/y - t^6.52/(g1*g2*y) - t^6.58/(g2^2*y) - t^6.98/(g1*y) - (g1*g2*t^6.98)/y + t^7.1/(g1*g2^3*y) + (2*t^7.5)/y + (2*t^7.5)/(g1^2*g2*y) + (3*t^7.56)/(g1*g2^2*y) + (2*g1*t^7.56)/(g2*y) + t^7.62/(g2^3*y) + t^7.96/(g1^2*y) + (4*g2*t^7.96)/y + (g1^2*g2^2*t^7.97)/y + (3*g1*t^8.02)/y + (4*t^8.02)/(g1*g2*y) + t^8.08/(g2^2*y) + (g2^2*t^8.42)/y + (3*t^8.48)/(g1*y) + (3*g1*g2*t^8.48)/y - t^8.53/(g1^2*g2^2*y) + (2*t^8.54)/(g2*y) - t^8.6/(g1*g2^3*y) - t^8.66/(g2^4*y) + (2*g2*t^8.94)/(g1*y) + (2*g1*g2^2*t^8.94)/y - t^4.5*y - (t^6.52*y)/(g1*g2) - (t^6.58*y)/g2^2 - (t^6.98*y)/g1 - g1*g2*t^6.98*y + (t^7.1*y)/(g1*g2^3) + 2*t^7.5*y + (2*t^7.5*y)/(g1^2*g2) + (3*t^7.56*y)/(g1*g2^2) + (2*g1*t^7.56*y)/g2 + (t^7.62*y)/g2^3 + (t^7.96*y)/g1^2 + 4*g2*t^7.96*y + g1^2*g2^2*t^7.97*y + 3*g1*t^8.02*y + (4*t^8.02*y)/(g1*g2) + (t^8.08*y)/g2^2 + g2^2*t^8.42*y + (3*t^8.48*y)/g1 + 3*g1*g2*t^8.48*y - (t^8.53*y)/(g1^2*g2^2) + (2*t^8.54*y)/g2 - (t^8.6*y)/(g1*g2^3) - (t^8.66*y)/g2^4 + (2*g2*t^8.94*y)/g1 + 2*g1*g2^2*t^8.94*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46003 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ \phi_1^4$ + $ M_3\phi_1\tilde{q}_2^2$ 0.6789 0.8759 0.775 [X:[], M:[0.8267, 0.8267, 0.6933], q:[0.75, 0.4233], qb:[0.4233, 0.4033], phi:[0.5]] t^2.08 + 4*t^2.48 + t^2.54 + t^3. + t^3.46 + 2*t^3.98 + 3*t^4.04 + t^4.16 + 4*t^4.56 + t^4.62 + 10*t^4.96 + 4*t^5.02 + 2*t^5.08 + 4*t^5.48 + 2*t^5.54 + 2*t^5.94 - 4*t^6. - t^4.5/y - t^4.5*y detail {a: 325849/480000, c: 420449/480000, M1: 62/75, M2: 62/75, M3: 52/75, q1: 3/4, q2: 127/300, qb1: 127/300, qb2: 121/300, phi1: 1/2}