Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
551 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{2}M_{5}$ | 0.7014 | 0.8808 | 0.7963 | [M:[0.6704, 1.1099, 0.9866, 0.6972, 0.8901], q:[0.7775, 0.5521], qb:[0.4613, 0.4288], phi:[0.4451]] | [M:[[12, 12], [-4, -4], [7, 11], [-2, -10], [4, 4]], q:[[-1, -1], [-11, -11]], qb:[[4, 0], [0, 4]], phi:[[2, 2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{4}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{5}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}^{2}$ | ${}$ | -3 | t^2.011 + t^2.092 + 2*t^2.67 + t^2.943 + t^2.96 + t^3.619 + t^3.716 + t^4.006 + t^4.023 + 2*t^4.103 + t^4.183 + t^4.278 + t^4.375 + t^4.648 + 2*t^4.682 + 2*t^4.762 + t^4.954 + t^4.971 + t^5.035 + t^5.052 + 3*t^5.341 + 2*t^5.613 + 2*t^5.63 + t^5.711 + t^5.808 + t^5.886 + t^5.92 - 3*t^6. + t^6.017 + t^6.034 + 2*t^6.114 + 2*t^6.195 - t^6.272 + t^6.275 + 2*t^6.289 + 2*t^6.387 + t^6.467 + t^6.562 + t^6.579 + 2*t^6.676 + 2*t^6.693 + t^6.739 + 4*t^6.773 + 2*t^6.854 + t^6.948 + t^6.965 + t^6.982 + 2*t^7.046 + t^7.063 + t^7.126 + t^7.143 + t^7.221 + 2*t^7.318 - t^7.335 + 3*t^7.352 + 2*t^7.433 + t^7.591 - t^7.608 + 2*t^7.625 + 2*t^7.642 + 3*t^7.722 + t^7.802 + t^7.819 + t^7.897 + t^7.9 + t^7.931 + 2*t^8.011 + t^8.028 + t^8.045 - 3*t^8.092 + t^8.109 + 2*t^8.126 + 3*t^8.206 + t^8.284 + 2*t^8.286 + 3*t^8.301 - t^8.364 + t^8.367 + t^8.381 + 3*t^8.478 + 2*t^8.556 + t^8.559 + 2*t^8.59 + t^8.653 - 6*t^8.67 + 2*t^8.687 + 2*t^8.704 + t^8.751 + 4*t^8.785 + t^8.828 + t^8.831 + 4*t^8.865 + t^8.879 + t^8.926 - 5*t^8.943 + 2*t^8.946 + t^8.977 + t^8.994 - t^4.335/y - t^6.347/y - t^6.427/y - t^7.006/y + t^7.103/y - t^7.295/y + t^7.375/y + t^7.665/y + (2*t^7.682)/y + (2*t^7.762)/y + t^7.954/y + t^7.971/y + t^8.035/y + t^8.052/y + t^8.244/y + t^8.324/y + t^8.341/y - t^8.358/y - t^8.438/y - t^8.519/y + (2*t^8.613)/y + (3*t^8.63)/y + t^8.711/y + t^8.728/y + t^8.808/y + t^8.903/y - t^4.335*y - t^6.347*y - t^6.427*y - t^7.006*y + t^7.103*y - t^7.295*y + t^7.375*y + t^7.665*y + 2*t^7.682*y + 2*t^7.762*y + t^7.954*y + t^7.971*y + t^8.035*y + t^8.052*y + t^8.244*y + t^8.324*y + t^8.341*y - t^8.358*y - t^8.438*y - t^8.519*y + 2*t^8.613*y + 3*t^8.63*y + t^8.711*y + t^8.728*y + t^8.808*y + t^8.903*y | g1^12*g2^12*t^2.011 + t^2.092/(g1^2*g2^10) + 2*g1^4*g2^4*t^2.67 + t^2.943/(g1^11*g2^7) + g1^7*g2^11*t^2.96 + (g2^3*t^3.619)/g1 + (g1^3*t^3.716)/g2 + g1^6*g2^6*t^4.006 + g1^24*g2^24*t^4.023 + 2*g1^10*g2^2*t^4.103 + t^4.183/(g1^4*g2^20) + t^4.278/(g1^9*g2^5) + t^4.375/(g1^5*g2^9) + t^4.648/(g1^20*g2^20) + 2*g1^16*g2^16*t^4.682 + (2*g1^2*t^4.762)/g2^6 + g1*g2^5*t^4.954 + g1^19*g2^23*t^4.971 + t^5.035/(g1^13*g2^17) + g1^5*g2*t^5.052 + 3*g1^8*g2^8*t^5.341 + (2*t^5.613)/(g1^7*g2^3) + 2*g1^11*g2^15*t^5.63 + t^5.711/(g1^3*g2^7) + (g1*t^5.808)/g2^11 + t^5.886/(g1^22*g2^14) + g1^14*g2^22*t^5.92 - 3*t^6. + g1^18*g2^18*t^6.017 + g1^36*g2^36*t^6.034 + 2*g1^22*g2^14*t^6.114 + (2*g1^8*t^6.195)/g2^8 - t^6.272/(g1^15*g2^11) + t^6.275/(g1^6*g2^30) + 2*g1^3*g2^7*t^6.289 + 2*g1^7*g2^3*t^6.387 + t^6.467/(g1^7*g2^19) + t^6.562/(g1^12*g2^4) + g1^6*g2^14*t^6.579 + 2*g1^10*g2^10*t^6.676 + 2*g1^28*g2^28*t^6.693 + t^6.739/(g1^22*g2^30) + 4*g1^14*g2^6*t^6.773 + (2*t^6.854)/g2^16 + t^6.948/(g1^5*g2) + g1^13*g2^17*t^6.965 + g1^31*g2^35*t^6.982 + (2*t^7.046)/(g1*g2^5) + g1^17*g2^13*t^7.063 + t^7.126/(g1^15*g2^27) + (g1^3*t^7.143)/g2^9 + t^7.221/(g1^20*g2^12) + (2*t^7.318)/(g1^16*g2^16) - g1^2*g2^2*t^7.335 + 3*g1^20*g2^20*t^7.352 + (2*g1^6*t^7.433)/g2^2 + t^7.591/(g1^31*g2^27) - t^7.608/(g1^13*g2^9) + 2*g1^5*g2^9*t^7.625 + 2*g1^23*g2^27*t^7.642 + 3*g1^9*g2^5*t^7.722 + t^7.802/(g1^5*g2^17) + g1^13*g2*t^7.819 + t^7.897/(g1^10*g2^2) + t^7.9/(g1*g2^21) + g1^26*g2^34*t^7.931 + 2*g1^12*g2^12*t^8.011 + g1^30*g2^30*t^8.028 + g1^48*g2^48*t^8.045 - (3*t^8.092)/(g1^2*g2^10) + g1^16*g2^8*t^8.109 + 2*g1^34*g2^26*t^8.126 + 3*g1^20*g2^4*t^8.206 + (g2*t^8.284)/g1^3 + (2*g1^6*t^8.286)/g2^18 + 3*g1^15*g2^19*t^8.301 - t^8.364/(g1^17*g2^21) + t^8.367/(g1^8*g2^40) + (g1*t^8.381)/g2^3 + (3*g1^5*t^8.478)/g2^7 + (2*t^8.556)/(g1^18*g2^10) + t^8.559/(g1^9*g2^29) + 2*g1^18*g2^26*t^8.59 + t^8.653/(g1^14*g2^14) - 6*g1^4*g2^4*t^8.67 + 2*g1^22*g2^22*t^8.687 + 2*g1^40*g2^40*t^8.704 + t^8.751/(g1^10*g2^18) + 4*g1^26*g2^18*t^8.785 + t^8.828/(g1^33*g2^21) + t^8.831/(g1^24*g2^40) + (4*g1^12*t^8.865)/g2^4 + g1^21*g2^33*t^8.879 + t^8.926/(g1^29*g2^25) - (5*t^8.943)/(g1^11*g2^7) + (2*t^8.946)/(g1^2*g2^26) + g1^25*g2^29*t^8.977 + g1^43*g2^47*t^8.994 - (g1^2*g2^2*t^4.335)/y - (g1^14*g2^14*t^6.347)/y - t^6.427/(g2^8*y) - (g1^6*g2^6*t^7.006)/y + (g1^10*g2^2*t^7.103)/y - (g1^9*g2^13*t^7.295)/y + t^7.375/(g1^5*g2^9*y) + t^7.665/(g1^2*g2^2*y) + (2*g1^16*g2^16*t^7.682)/y + (2*g1^2*t^7.762)/(g2^6*y) + (g1*g2^5*t^7.954)/y + (g1^19*g2^23*t^7.971)/y + t^8.035/(g1^13*g2^17*y) + (g1^5*g2*t^8.052)/y + (g1^4*g2^12*t^8.244)/y + t^8.324/(g1^10*g2^10*y) + (g1^8*g2^8*t^8.341)/y - (g1^26*g2^26*t^8.358)/y - (g1^12*g2^4*t^8.438)/y - t^8.519/(g1^2*g2^18*y) + (2*t^8.613)/(g1^7*g2^3*y) + (3*g1^11*g2^15*t^8.63)/y + t^8.711/(g1^3*g2^7*y) + (g1^15*g2^11*t^8.728)/y + (g1*t^8.808)/(g2^11*y) + (g2^4*t^8.903)/(g1^4*y) - g1^2*g2^2*t^4.335*y - g1^14*g2^14*t^6.347*y - (t^6.427*y)/g2^8 - g1^6*g2^6*t^7.006*y + g1^10*g2^2*t^7.103*y - g1^9*g2^13*t^7.295*y + (t^7.375*y)/(g1^5*g2^9) + (t^7.665*y)/(g1^2*g2^2) + 2*g1^16*g2^16*t^7.682*y + (2*g1^2*t^7.762*y)/g2^6 + g1*g2^5*t^7.954*y + g1^19*g2^23*t^7.971*y + (t^8.035*y)/(g1^13*g2^17) + g1^5*g2*t^8.052*y + g1^4*g2^12*t^8.244*y + (t^8.324*y)/(g1^10*g2^10) + g1^8*g2^8*t^8.341*y - g1^26*g2^26*t^8.358*y - g1^12*g2^4*t^8.438*y - (t^8.519*y)/(g1^2*g2^18) + (2*t^8.613*y)/(g1^7*g2^3) + 3*g1^11*g2^15*t^8.63*y + (t^8.711*y)/(g1^3*g2^7) + g1^15*g2^11*t^8.728*y + (g1*t^8.808*y)/g2^11 + (g2^4*t^8.903*y)/g1^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
866 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{4}\phi_{1}^{2}$ | 0.595 | 0.7614 | 0.7815 | [M:[0.6764, 1.1079, 0.7843, 1.1079, 0.8921], q:[0.777, 0.5466], qb:[0.6691, 0.223], phi:[0.4461]] | t^2.029 + t^2.309 + t^2.353 + 2*t^2.676 + t^3. + t^3.324 + t^3.647 + t^4.015 + t^4.058 + 2*t^4.338 + t^4.382 + 2*t^4.618 + 3*t^4.706 + 3*t^4.985 + 2*t^5.029 + t^5.309 + 6*t^5.353 + 3*t^5.676 + t^5.956 - t^6. - t^4.338/y - t^4.338*y | detail | |
1895 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ | 0.7185 | 0.912 | 0.7878 | [M:[0.6702, 1.1099, 0.9957, 0.6787, 0.8901, 0.7844], q:[0.7775, 0.5523], qb:[0.4519, 0.4381], phi:[0.445]] | t^2.011 + t^2.036 + t^2.353 + 2*t^2.67 + t^2.971 + t^2.987 + t^3.688 + t^4.005 + t^4.021 + 2*t^4.047 + t^4.072 + t^4.306 + t^4.348 + t^4.364 + t^4.389 + t^4.649 + 2*t^4.681 + 3*t^4.706 + t^4.982 + t^4.998 + t^5.008 + 3*t^5.023 + t^5.325 + 4*t^5.34 + 2*t^5.642 + t^5.657 + t^5.724 + t^5.943 + t^5.974 - 3*t^6. - t^4.335/y - t^4.335*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
348 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ | 0.6916 | 0.8641 | 0.8004 | [M:[0.6838, 1.1054, 0.9954, 0.6931], q:[0.7763, 0.5398], qb:[0.4648, 0.4298], phi:[0.4473]] | t^2.051 + t^2.079 + t^2.684 + t^2.909 + t^2.986 + t^3.316 + t^3.619 + t^3.723 + t^4.026 + t^4.103 + 2*t^4.131 + t^4.158 + t^4.251 + t^4.356 + t^4.581 + t^4.735 + t^4.763 + t^4.96 + t^4.988 + t^5.038 + t^5.065 + 2*t^5.368 + t^5.395 + t^5.593 + t^5.67 + t^5.698 + t^5.803 + t^5.818 + t^5.972 - 2*t^6. - t^4.342/y - t^4.342*y | detail |