Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1783 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ 0.617 0.7971 0.7742 [M:[0.9586, 1.1242, 0.9586, 0.8758, 0.8061], q:[0.7396, 0.3018], qb:[0.4542, 0.4215], phi:[0.5207]] [M:[[4, 4], [-12, -12], [4, 4], [12, 12], [-13, -1]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{5}$, ${ }M_{4}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{4}M_{5}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{5}\phi_{1}q_{2}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ ${}M_{4}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ -1 t^2.17 + t^2.268 + t^2.418 + t^2.627 + 2*t^2.876 + t^3.373 + t^3.484 + t^3.732 + t^3.83 + t^4.091 + t^4.189 + t^4.288 + t^4.34 + t^4.438 + t^4.536 + t^4.588 + t^4.686 + t^4.797 + t^4.837 + t^4.895 + 3*t^5.046 + 2*t^5.144 + t^5.255 + 2*t^5.294 + 2*t^5.503 + t^5.653 + 3*t^5.752 + t^5.791 + t^5.902 - t^6. + t^6.111 + t^6.15 + t^6.248 + t^6.261 + 3*t^6.359 + t^6.457 + 2*t^6.51 + t^6.556 + 2*t^6.608 + 2*t^6.706 + t^6.719 + t^6.745 + t^6.758 + t^6.804 + t^6.817 + t^6.915 - t^6.954 + 3*t^6.967 + t^7.007 + 2*t^7.065 + t^7.105 + 2*t^7.163 + 3*t^7.216 + t^7.255 + t^7.314 + t^7.412 + t^7.425 + 3*t^7.464 + t^7.523 + t^7.575 + 3*t^7.673 + 2*t^7.712 + 2*t^7.771 - t^7.811 + 2*t^7.823 + t^7.882 + 4*t^7.921 + 2*t^8.02 + t^8.072 + t^8.118 + 2*t^8.13 + t^8.183 + t^8.209 - 3*t^8.268 + 2*t^8.281 + t^8.32 + 4*t^8.379 - 3*t^8.418 + t^8.431 + t^8.477 - 2*t^8.516 + 3*t^8.529 + t^8.569 + t^8.575 + 2*t^8.627 + t^8.667 + 2*t^8.68 + t^8.738 + 2*t^8.778 + t^8.824 - 5*t^8.876 + t^8.889 + 2*t^8.928 + 3*t^8.987 - t^4.562/y - t^6.98/y + t^7.588/y + (2*t^7.686)/y + t^7.797/y + t^7.895/y + (3*t^8.046)/y + (3*t^8.144)/y + (2*t^8.294)/y + (2*t^8.503)/y + t^8.543/y + t^8.641/y + t^8.653/y + (2*t^8.752)/y + t^8.791/y + (2*t^8.902)/y - t^4.562*y - t^6.98*y + t^7.588*y + 2*t^7.686*y + t^7.797*y + t^7.895*y + 3*t^8.046*y + 3*t^8.144*y + 2*t^8.294*y + 2*t^8.503*y + t^8.543*y + t^8.641*y + t^8.653*y + 2*t^8.752*y + t^8.791*y + 2*t^8.902*y (g2^7*t^2.17)/g1^5 + (g1^7*t^2.268)/g2^5 + t^2.418/(g1^13*g2) + g1^12*g2^12*t^2.627 + 2*g1^4*g2^4*t^2.876 + t^3.373/(g1^12*g2^12) + g1*g2^13*t^3.484 + (g2^5*t^3.732)/g1^7 + (g1^5*t^3.83)/g2^7 + (g2^22*t^4.091)/g1^2 + g1^10*g2^10*t^4.189 + (g1^22*t^4.288)/g2^2 + (g2^14*t^4.34)/g1^10 + g1^2*g2^2*t^4.438 + (g1^14*t^4.536)/g2^10 + (g2^6*t^4.588)/g1^18 + t^4.686/(g1^6*g2^6) + g1^7*g2^19*t^4.797 + t^4.837/(g1^26*g2^2) + g1^19*g2^7*t^4.895 + (3*g2^11*t^5.046)/g1 + (2*g1^11*t^5.144)/g2 + g1^24*g2^24*t^5.255 + (2*g2^3*t^5.294)/g1^9 + 2*g1^16*g2^16*t^5.503 + (g2^20*t^5.653)/g1^4 + 3*g1^8*g2^8*t^5.752 + t^5.791/(g1^25*g2^13) + (g2^12*t^5.902)/g1^12 - t^6. + g1^13*g2^25*t^6.111 + (g2^4*t^6.15)/g1^20 + t^6.248/(g1^8*g2^8) + (g2^29*t^6.261)/g1^7 + 3*g1^5*g2^17*t^6.359 + g1^17*g2^5*t^6.457 + (2*g2^21*t^6.51)/g1^15 + (g1^29*t^6.556)/g2^7 + (2*g2^9*t^6.608)/g1^3 + (2*g1^9*t^6.706)/g2^3 + g1^10*g2^34*t^6.719 + t^6.745/(g1^24*g2^24) + (g2^13*t^6.758)/g1^23 + (g1^21*t^6.804)/g2^15 + g1^22*g2^22*t^6.817 + g1^34*g2^10*t^6.915 - (g1*t^6.954)/g2^11 + 3*g1^2*g2^26*t^6.967 + (g2^5*t^7.007)/g1^31 + 2*g1^14*g2^14*t^7.065 + t^7.105/(g1^19*g2^7) + 2*g1^26*g2^2*t^7.163 + (3*g2^18*t^7.216)/g1^6 + t^7.255/(g1^39*g2^3) + g1^6*g2^6*t^7.314 + (g1^18*t^7.412)/g2^6 + g1^19*g2^31*t^7.425 + (3*g2^10*t^7.464)/g1^14 + g1^31*g2^19*t^7.523 + (g2^35*t^7.575)/g1 + 3*g1^11*g2^23*t^7.673 + (2*g2^2*t^7.712)/g1^22 + 2*g1^23*g2^11*t^7.771 - t^7.811/(g1^10*g2^10) + (2*g2^27*t^7.823)/g1^9 + g1^36*g2^36*t^7.882 + 4*g1^3*g2^15*t^7.921 + 2*g1^15*g2^3*t^8.02 + (g2^19*t^8.072)/g1^17 + (g1^27*t^8.118)/g2^9 + 2*g1^28*g2^28*t^8.13 + (g2^44*t^8.183)/g1^4 + t^8.209/(g1^38*g2^14) - (3*g1^7*t^8.268)/g2^5 + 2*g1^8*g2^32*t^8.281 + (g2^11*t^8.32)/g1^25 + 4*g1^20*g2^20*t^8.379 - (3*t^8.418)/(g1^13*g2) + (g2^36*t^8.431)/g1^12 + g1^32*g2^8*t^8.477 - (2*t^8.516)/(g1*g2^13) + 3*g2^24*t^8.529 + (g2^3*t^8.569)/g1^33 + (g1^44*t^8.575)/g2^4 + 2*g1^12*g2^12*t^8.627 + t^8.667/(g1^21*g2^9) + (2*g2^28*t^8.68)/g1^20 + g1^25*g2^37*t^8.738 + (2*g2^16*t^8.778)/g1^8 + (g1^36*t^8.824)/g2^12 - 5*g1^4*g2^4*t^8.876 + g1^5*g2^41*t^8.889 + (2*g2^20*t^8.928)/g1^28 + 3*g1^17*g2^29*t^8.987 - t^4.562/(g1^2*g2^2*y) - t^6.98/(g1^15*g2^3*y) + (g2^6*t^7.588)/(g1^18*y) + (2*t^7.686)/(g1^6*g2^6*y) + (g1^7*g2^19*t^7.797)/y + (g1^19*g2^7*t^7.895)/y + (3*g2^11*t^8.046)/(g1*y) + (3*g1^11*t^8.144)/(g2*y) + (2*g2^3*t^8.294)/(g1^9*y) + (2*g1^16*g2^16*t^8.503)/y + t^8.543/(g1^17*g2^5*y) + t^8.641/(g1^5*g2^17*y) + (g2^20*t^8.653)/(g1^4*y) + (2*g1^8*g2^8*t^8.752)/y + t^8.791/(g1^25*g2^13*y) + (2*g2^12*t^8.902)/(g1^12*y) - (t^4.562*y)/(g1^2*g2^2) - (t^6.98*y)/(g1^15*g2^3) + (g2^6*t^7.588*y)/g1^18 + (2*t^7.686*y)/(g1^6*g2^6) + g1^7*g2^19*t^7.797*y + g1^19*g2^7*t^7.895*y + (3*g2^11*t^8.046*y)/g1 + (3*g1^11*t^8.144*y)/g2 + (2*g2^3*t^8.294*y)/g1^9 + 2*g1^16*g2^16*t^8.503*y + (t^8.543*y)/(g1^17*g2^5) + (t^8.641*y)/(g1^5*g2^17) + (g2^20*t^8.653*y)/g1^4 + 2*g1^8*g2^8*t^8.752*y + (t^8.791*y)/(g1^25*g2^13) + (2*g2^12*t^8.902*y)/g1^12


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2791 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ 0.6157 0.7974 0.7721 [M:[0.9456, 1.1631, 0.9456, 0.8369, 0.8369], q:[0.7364, 0.318], qb:[0.4267, 0.4102], phi:[0.5272]] t^2.185 + t^2.234 + 2*t^2.511 + 2*t^2.837 + t^3.44 + t^3.489 + t^3.766 + t^3.815 + t^4.043 + t^4.092 + t^4.142 + t^4.369 + t^4.418 + t^4.468 + 2*t^4.695 + 2*t^4.745 + 5*t^5.021 + 2*t^5.071 + 4*t^5.348 + t^5.625 + 3*t^5.674 + 2*t^5.951 - t^4.582/y - t^4.582*y detail
2792 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ 0.6321 0.8217 0.7693 [M:[0.967, 1.099, 0.967, 0.901, 0.8077, 0.8077], q:[0.7418, 0.2912], qb:[0.4505, 0.4505], phi:[0.5165]] 2*t^2.225 + 2*t^2.423 + t^2.703 + 2*t^2.901 + t^3.297 + 2*t^3.775 + 3*t^4.253 + 3*t^4.451 + 4*t^4.648 + 3*t^4.846 + 2*t^4.928 + 6*t^5.126 + 4*t^5.324 + t^5.406 + 2*t^5.604 + 2*t^5.72 + 2*t^5.802 - t^6. - t^4.549/y - t^4.549*y detail
2793 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ + ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ 0.6121 0.787 0.7778 [M:[0.9726, 1.0821, 0.9726, 0.9179, 0.8253], q:[0.7432, 0.2842], qb:[0.4316, 0.4863], phi:[0.5137]] t^2.147 + t^2.312 + t^2.476 + t^2.754 + 2*t^2.918 + t^3.246 + 2*t^3.688 + t^3.853 + t^4.13 + 2*t^4.295 + 2*t^4.459 + 2*t^4.623 + t^4.787 + t^4.901 + t^4.952 + 3*t^5.065 + 3*t^5.229 + 2*t^5.394 + t^5.507 + 2*t^5.671 + t^5.722 + 3*t^5.836 - t^4.541/y - t^4.541*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
345 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{2}M_{4}$ 0.6019 0.7721 0.7795 [M:[0.9502, 1.1494, 0.9502, 0.8506], q:[0.7376, 0.3122], qb:[0.4253, 0.4253], phi:[0.5249]] 2*t^2.213 + t^2.552 + 2*t^2.851 + t^3.448 + 2*t^3.489 + 2*t^3.787 + 3*t^4.127 + 3*t^4.425 + 2*t^4.764 + 4*t^5.063 + t^5.104 + 2*t^5.402 + 6*t^5.701 - t^6. - t^4.575/y - t^4.575*y detail