Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46021 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ 0.617 0.7971 0.7742 [M:[0.9586, 0.8061, 0.9586], q:[0.7396, 0.3018], qb:[0.4542, 0.4215], phi:[0.5207]] [M:[[4, 4], [-13, -1], [4, 4]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{2}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ ${2}\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ -1 t^2.17 + t^2.268 + t^2.418 + t^2.627 + 2*t^2.876 + t^3.373 + t^3.484 + t^3.732 + t^3.83 + t^4.091 + t^4.189 + t^4.288 + t^4.34 + t^4.438 + t^4.536 + t^4.588 + t^4.686 + t^4.797 + t^4.837 + t^4.895 + 3*t^5.046 + 2*t^5.144 + t^5.255 + 2*t^5.294 + 2*t^5.503 + t^5.653 + 3*t^5.752 + t^5.791 + t^5.902 - t^6. + t^6.111 + t^6.15 + t^6.248 + t^6.261 + 3*t^6.359 + t^6.457 + 2*t^6.51 + t^6.556 + 2*t^6.608 + 2*t^6.706 + t^6.719 + t^6.745 + t^6.758 + t^6.804 + t^6.817 + t^6.915 - t^6.954 + 3*t^6.967 + t^7.007 + 2*t^7.065 + t^7.105 + 2*t^7.163 + 3*t^7.216 + t^7.255 + t^7.314 + t^7.412 + t^7.425 + 3*t^7.464 + t^7.523 + t^7.575 + 3*t^7.673 + 2*t^7.712 + 2*t^7.771 - t^7.811 + 2*t^7.823 + t^7.882 + 4*t^7.921 + 2*t^8.02 + t^8.072 + t^8.118 + 2*t^8.13 + t^8.183 + t^8.209 - 3*t^8.268 + 2*t^8.281 + t^8.32 + 4*t^8.379 - 3*t^8.418 + t^8.431 + t^8.477 - 2*t^8.516 + 3*t^8.529 + t^8.569 + t^8.575 + 2*t^8.627 + t^8.667 + 2*t^8.68 + t^8.738 + 2*t^8.778 + t^8.824 - 5*t^8.876 + t^8.889 + 2*t^8.928 + 3*t^8.987 - t^4.562/y - t^6.98/y + t^7.588/y + (2*t^7.686)/y + t^7.797/y + t^7.895/y + (3*t^8.046)/y + (3*t^8.144)/y + (2*t^8.294)/y + (2*t^8.503)/y + t^8.543/y + t^8.641/y + t^8.653/y + (2*t^8.752)/y + t^8.791/y + (2*t^8.902)/y - t^4.562*y - t^6.98*y + t^7.588*y + 2*t^7.686*y + t^7.797*y + t^7.895*y + 3*t^8.046*y + 3*t^8.144*y + 2*t^8.294*y + 2*t^8.503*y + t^8.543*y + t^8.641*y + t^8.653*y + 2*t^8.752*y + t^8.791*y + 2*t^8.902*y (g2^7*t^2.17)/g1^5 + (g1^7*t^2.268)/g2^5 + t^2.418/(g1^13*g2) + g1^12*g2^12*t^2.627 + 2*g1^4*g2^4*t^2.876 + t^3.373/(g1^12*g2^12) + g1*g2^13*t^3.484 + (g2^5*t^3.732)/g1^7 + (g1^5*t^3.83)/g2^7 + (g2^22*t^4.091)/g1^2 + g1^10*g2^10*t^4.189 + (g1^22*t^4.288)/g2^2 + (g2^14*t^4.34)/g1^10 + g1^2*g2^2*t^4.438 + (g1^14*t^4.536)/g2^10 + (g2^6*t^4.588)/g1^18 + t^4.686/(g1^6*g2^6) + g1^7*g2^19*t^4.797 + t^4.837/(g1^26*g2^2) + g1^19*g2^7*t^4.895 + (3*g2^11*t^5.046)/g1 + (2*g1^11*t^5.144)/g2 + g1^24*g2^24*t^5.255 + (2*g2^3*t^5.294)/g1^9 + 2*g1^16*g2^16*t^5.503 + (g2^20*t^5.653)/g1^4 + 3*g1^8*g2^8*t^5.752 + t^5.791/(g1^25*g2^13) + (g2^12*t^5.902)/g1^12 - t^6. + g1^13*g2^25*t^6.111 + (g2^4*t^6.15)/g1^20 + t^6.248/(g1^8*g2^8) + (g2^29*t^6.261)/g1^7 + 3*g1^5*g2^17*t^6.359 + g1^17*g2^5*t^6.457 + (2*g2^21*t^6.51)/g1^15 + (g1^29*t^6.556)/g2^7 + (2*g2^9*t^6.608)/g1^3 + (2*g1^9*t^6.706)/g2^3 + g1^10*g2^34*t^6.719 + t^6.745/(g1^24*g2^24) + (g2^13*t^6.758)/g1^23 + (g1^21*t^6.804)/g2^15 + g1^22*g2^22*t^6.817 + g1^34*g2^10*t^6.915 - (g1*t^6.954)/g2^11 + 3*g1^2*g2^26*t^6.967 + (g2^5*t^7.007)/g1^31 + 2*g1^14*g2^14*t^7.065 + t^7.105/(g1^19*g2^7) + 2*g1^26*g2^2*t^7.163 + (3*g2^18*t^7.216)/g1^6 + t^7.255/(g1^39*g2^3) + g1^6*g2^6*t^7.314 + (g1^18*t^7.412)/g2^6 + g1^19*g2^31*t^7.425 + (3*g2^10*t^7.464)/g1^14 + g1^31*g2^19*t^7.523 + (g2^35*t^7.575)/g1 + 3*g1^11*g2^23*t^7.673 + (2*g2^2*t^7.712)/g1^22 + 2*g1^23*g2^11*t^7.771 - t^7.811/(g1^10*g2^10) + (2*g2^27*t^7.823)/g1^9 + g1^36*g2^36*t^7.882 + 4*g1^3*g2^15*t^7.921 + 2*g1^15*g2^3*t^8.02 + (g2^19*t^8.072)/g1^17 + (g1^27*t^8.118)/g2^9 + 2*g1^28*g2^28*t^8.13 + (g2^44*t^8.183)/g1^4 + t^8.209/(g1^38*g2^14) - (3*g1^7*t^8.268)/g2^5 + 2*g1^8*g2^32*t^8.281 + (g2^11*t^8.32)/g1^25 + 4*g1^20*g2^20*t^8.379 - (3*t^8.418)/(g1^13*g2) + (g2^36*t^8.431)/g1^12 + g1^32*g2^8*t^8.477 - (2*t^8.516)/(g1*g2^13) + 3*g2^24*t^8.529 + (g2^3*t^8.569)/g1^33 + (g1^44*t^8.575)/g2^4 + 2*g1^12*g2^12*t^8.627 + t^8.667/(g1^21*g2^9) + (2*g2^28*t^8.68)/g1^20 + g1^25*g2^37*t^8.738 + (2*g2^16*t^8.778)/g1^8 + (g1^36*t^8.824)/g2^12 - 5*g1^4*g2^4*t^8.876 + g1^5*g2^41*t^8.889 + (2*g2^20*t^8.928)/g1^28 + 3*g1^17*g2^29*t^8.987 - t^4.562/(g1^2*g2^2*y) - t^6.98/(g1^15*g2^3*y) + (g2^6*t^7.588)/(g1^18*y) + (2*t^7.686)/(g1^6*g2^6*y) + (g1^7*g2^19*t^7.797)/y + (g1^19*g2^7*t^7.895)/y + (3*g2^11*t^8.046)/(g1*y) + (3*g1^11*t^8.144)/(g2*y) + (2*g2^3*t^8.294)/(g1^9*y) + (2*g1^16*g2^16*t^8.503)/y + t^8.543/(g1^17*g2^5*y) + t^8.641/(g1^5*g2^17*y) + (g2^20*t^8.653)/(g1^4*y) + (2*g1^8*g2^8*t^8.752)/y + t^8.791/(g1^25*g2^13*y) + (2*g2^12*t^8.902)/(g1^12*y) - (t^4.562*y)/(g1^2*g2^2) - (t^6.98*y)/(g1^15*g2^3) + (g2^6*t^7.588*y)/g1^18 + (2*t^7.686*y)/(g1^6*g2^6) + g1^7*g2^19*t^7.797*y + g1^19*g2^7*t^7.895*y + (3*g2^11*t^8.046*y)/g1 + (3*g1^11*t^8.144*y)/g2 + (2*g2^3*t^8.294*y)/g1^9 + 2*g1^16*g2^16*t^8.503*y + (t^8.543*y)/(g1^17*g2^5) + (t^8.641*y)/(g1^5*g2^17) + (g2^20*t^8.653*y)/g1^4 + 2*g1^8*g2^8*t^8.752*y + (t^8.791*y)/(g1^25*g2^13) + (2*g2^12*t^8.902*y)/g1^12


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46269 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ 0.636 0.8314 0.765 [M:[0.9582, 0.8164, 0.9582, 0.7463], q:[0.7395, 0.3023], qb:[0.4441, 0.4305], phi:[0.5209]] t^2.198 + 2*t^2.239 + t^2.449 + t^2.624 + 2*t^2.875 + t^3.376 + t^3.51 + t^3.802 + t^4.146 + t^4.186 + t^4.227 + t^4.396 + 2*t^4.437 + 3*t^4.478 + t^4.647 + 2*t^4.688 + t^4.822 + 2*t^4.863 + t^4.898 + 3*t^5.073 + 4*t^5.114 + t^5.247 + 2*t^5.324 + 2*t^5.498 + t^5.615 + t^5.708 + 4*t^5.749 + t^5.825 - 2*t^6. - t^4.563/y - t^4.563*y detail
46211 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ 0.6165 0.7954 0.7751 [M:[0.9591, 0.8215, 0.9591], q:[0.7398, 0.3011], qb:[0.4387, 0.4387], phi:[0.5204]] 2*t^2.219 + t^2.465 + t^2.632 + 2*t^2.877 + t^3.368 + t^3.535 + 2*t^3.781 + 3*t^4.194 + 3*t^4.439 + 2*t^4.684 + 2*t^4.852 + t^4.929 + 5*t^5.097 + t^5.264 + 2*t^5.342 + 2*t^5.51 + 4*t^5.755 + t^5.832 - t^4.561/y - t^4.561*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45895 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ 0.6135 0.7901 0.7764 [M:[0.9652, 0.7952], q:[0.7413, 0.2934], qb:[0.4635, 0.4322], phi:[0.5174]] t^2.177 + t^2.271 + t^2.386 + t^2.687 + t^2.896 + t^3.104 + t^3.313 + t^3.521 + t^3.729 + t^3.823 + t^4.145 + t^4.239 + t^4.333 + t^4.354 + t^4.448 + t^4.542 + t^4.562 + t^4.656 + t^4.771 + t^4.864 + t^4.958 + 2*t^5.073 + t^5.167 + 2*t^5.281 + t^5.374 + t^5.375 + t^5.49 + t^5.583 + 2*t^5.698 + 2*t^5.791 + t^5.906 - t^4.552/y - t^4.552*y detail