Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
2792 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ | 0.6321 | 0.8217 | 0.7693 | [M:[0.967, 1.099, 0.967, 0.901, 0.8077, 0.8077], q:[0.7418, 0.2912], qb:[0.4505, 0.4505], phi:[0.5165]] | [M:[[4, 4], [-12, -12], [4, 4], [12, 12], [-13, -1], [-1, -13]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{6}$, ${ }M_{5}$, ${ }M_{4}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{5}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{4}M_{5}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{6}\phi_{1}q_{2}^{2}$, ${ }M_{5}\phi_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$ | ${}M_{4}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ | -1 | 2*t^2.225 + 2*t^2.423 + t^2.703 + 2*t^2.901 + t^3.297 + 2*t^3.775 + 3*t^4.253 + 3*t^4.451 + 4*t^4.648 + 3*t^4.846 + 2*t^4.928 + 6*t^5.126 + 4*t^5.324 + t^5.406 + 2*t^5.604 + 2*t^5.72 + 2*t^5.802 - t^6. + 4*t^6.198 + 4*t^6.478 + t^6.594 + 10*t^6.676 + 2*t^6.874 + 3*t^6.956 + 6*t^7.072 + 6*t^7.154 + 4*t^7.269 + 5*t^7.352 + 9*t^7.549 + 2*t^7.632 + 5*t^7.747 + 4*t^7.829 + 8*t^8.027 + t^8.109 + 3*t^8.143 - 2*t^8.225 + 2*t^8.307 - 6*t^8.423 + 7*t^8.505 + 6*t^8.621 + 2*t^8.703 + 2*t^8.901 - t^4.549/y - (2*t^6.973)/y + (5*t^7.648)/y + t^7.846/y + (2*t^7.928)/y + (8*t^8.126)/y + (4*t^8.324)/y + (2*t^8.522)/y + (2*t^8.604)/y + (2*t^8.72)/y + t^8.802/y - t^4.549*y - 2*t^6.973*y + 5*t^7.648*y + t^7.846*y + 2*t^7.928*y + 8*t^8.126*y + 4*t^8.324*y + 2*t^8.522*y + 2*t^8.604*y + 2*t^8.72*y + t^8.802*y | (g1^7*t^2.225)/g2^5 + (g2^7*t^2.225)/g1^5 + t^2.423/(g1*g2^13) + t^2.423/(g1^13*g2) + g1^12*g2^12*t^2.703 + 2*g1^4*g2^4*t^2.901 + t^3.297/(g1^12*g2^12) + (g1^5*t^3.775)/g2^7 + (g2^5*t^3.775)/g1^7 + (g1^22*t^4.253)/g2^2 + g1^10*g2^10*t^4.253 + (g2^22*t^4.253)/g1^2 + (g1^14*t^4.451)/g2^10 + g1^2*g2^2*t^4.451 + (g2^14*t^4.451)/g1^10 + (g1^6*t^4.648)/g2^18 + (2*t^4.648)/(g1^6*g2^6) + (g2^6*t^4.648)/g1^18 + t^4.846/(g1^2*g2^26) + t^4.846/(g1^14*g2^14) + t^4.846/(g1^26*g2^2) + g1^19*g2^7*t^4.928 + g1^7*g2^19*t^4.928 + (3*g1^11*t^5.126)/g2 + (3*g2^11*t^5.126)/g1 + (2*g1^3*t^5.324)/g2^9 + (2*g2^3*t^5.324)/g1^9 + g1^24*g2^24*t^5.406 + 2*g1^16*g2^16*t^5.604 + t^5.72/(g1^13*g2^25) + t^5.72/(g1^25*g2^13) + 2*g1^8*g2^8*t^5.802 - t^6. + (g1^4*t^6.198)/g2^20 + (2*t^6.198)/(g1^8*g2^8) + (g2^4*t^6.198)/g1^20 + (g1^29*t^6.478)/g2^7 + g1^17*g2^5*t^6.478 + g1^5*g2^17*t^6.478 + (g2^29*t^6.478)/g1^7 + t^6.594/(g1^24*g2^24) + (2*g1^21*t^6.676)/g2^15 + (3*g1^9*t^6.676)/g2^3 + (3*g2^9*t^6.676)/g1^3 + (2*g2^21*t^6.676)/g1^15 + (g1^13*t^6.874)/g2^23 + (g2^13*t^6.874)/g1^23 + g1^34*g2^10*t^6.956 + g1^22*g2^22*t^6.956 + g1^10*g2^34*t^6.956 + (g1^5*t^7.072)/g2^31 + (2*t^7.072)/(g1^7*g2^19) + (2*t^7.072)/(g1^19*g2^7) + (g2^5*t^7.072)/g1^31 + 2*g1^26*g2^2*t^7.154 + 2*g1^14*g2^14*t^7.154 + 2*g1^2*g2^26*t^7.154 + t^7.269/(g1^3*g2^39) + t^7.269/(g1^15*g2^27) + t^7.269/(g1^27*g2^15) + t^7.269/(g1^39*g2^3) + (2*g1^18*t^7.352)/g2^6 + g1^6*g2^6*t^7.352 + (2*g2^18*t^7.352)/g1^6 + (3*g1^10*t^7.549)/g2^14 + (3*t^7.549)/(g1^2*g2^2) + (3*g2^10*t^7.549)/g1^14 + g1^31*g2^19*t^7.632 + g1^19*g2^31*t^7.632 + (2*g1^2*t^7.747)/g2^22 + t^7.747/(g1^10*g2^10) + (2*g2^2*t^7.747)/g1^22 + 2*g1^23*g2^11*t^7.829 + 2*g1^11*g2^23*t^7.829 + (g1^27*t^8.027)/g2^9 + 3*g1^15*g2^3*t^8.027 + 3*g1^3*g2^15*t^8.027 + (g2^27*t^8.027)/g1^9 + g1^36*g2^36*t^8.109 + t^8.143/(g1^14*g2^38) + t^8.143/(g1^26*g2^26) + t^8.143/(g1^38*g2^14) - (g1^7*t^8.225)/g2^5 - (g2^7*t^8.225)/g1^5 + 2*g1^28*g2^28*t^8.307 - (3*t^8.423)/(g1*g2^13) - (3*t^8.423)/(g1^13*g2) + (g1^44*t^8.505)/g2^4 + g1^32*g2^8*t^8.505 + 3*g1^20*g2^20*t^8.505 + g1^8*g2^32*t^8.505 + (g2^44*t^8.505)/g1^4 + (g1^3*t^8.621)/g2^33 + (2*t^8.621)/(g1^9*g2^21) + (2*t^8.621)/(g1^21*g2^9) + (g2^3*t^8.621)/g1^33 + (g1^36*t^8.703)/g2^12 + (g2^36*t^8.703)/g1^12 + (2*g1^28*t^8.901)/g2^20 + (g1^16*t^8.901)/g2^8 - 4*g1^4*g2^4*t^8.901 + (g2^16*t^8.901)/g1^8 + (2*g2^28*t^8.901)/g1^20 - t^4.549/(g1^2*g2^2*y) - t^6.973/(g1^3*g2^15*y) - t^6.973/(g1^15*g2^3*y) + (g1^6*t^7.648)/(g2^18*y) + (3*t^7.648)/(g1^6*g2^6*y) + (g2^6*t^7.648)/(g1^18*y) + t^7.846/(g1^14*g2^14*y) + (g1^19*g2^7*t^7.928)/y + (g1^7*g2^19*t^7.928)/y + (4*g1^11*t^8.126)/(g2*y) + (4*g2^11*t^8.126)/(g1*y) + (2*g1^3*t^8.324)/(g2^9*y) + (2*g2^3*t^8.324)/(g1^9*y) + t^8.522/(g1^5*g2^17*y) + t^8.522/(g1^17*g2^5*y) + (2*g1^16*g2^16*t^8.604)/y + t^8.72/(g1^13*g2^25*y) + t^8.72/(g1^25*g2^13*y) + (g1^8*g2^8*t^8.802)/y - (t^4.549*y)/(g1^2*g2^2) - (t^6.973*y)/(g1^3*g2^15) - (t^6.973*y)/(g1^15*g2^3) + (g1^6*t^7.648*y)/g2^18 + (3*t^7.648*y)/(g1^6*g2^6) + (g2^6*t^7.648*y)/g1^18 + (t^7.846*y)/(g1^14*g2^14) + g1^19*g2^7*t^7.928*y + g1^7*g2^19*t^7.928*y + (4*g1^11*t^8.126*y)/g2 + (4*g2^11*t^8.126*y)/g1 + (2*g1^3*t^8.324*y)/g2^9 + (2*g2^3*t^8.324*y)/g1^9 + (t^8.522*y)/(g1^5*g2^17) + (t^8.522*y)/(g1^17*g2^5) + 2*g1^16*g2^16*t^8.604*y + (t^8.72*y)/(g1^13*g2^25) + (t^8.72*y)/(g1^25*g2^13) + g1^8*g2^8*t^8.802*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
1783 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ | 0.617 | 0.7971 | 0.7742 | [M:[0.9586, 1.1242, 0.9586, 0.8758, 0.8061], q:[0.7396, 0.3018], qb:[0.4542, 0.4215], phi:[0.5207]] | t^2.17 + t^2.268 + t^2.418 + t^2.627 + 2*t^2.876 + t^3.373 + t^3.484 + t^3.732 + t^3.83 + t^4.091 + t^4.189 + t^4.288 + t^4.34 + t^4.438 + t^4.536 + t^4.588 + t^4.686 + t^4.797 + t^4.837 + t^4.895 + 3*t^5.046 + 2*t^5.144 + t^5.255 + 2*t^5.294 + 2*t^5.503 + t^5.653 + 3*t^5.752 + t^5.791 + t^5.902 - t^6. - t^4.562/y - t^4.562*y | detail |