Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2792 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_2M_4$ + $ M_5q_1\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ 0.6321 0.8217 0.7693 [X:[], M:[0.967, 1.099, 0.967, 0.901, 0.8077, 0.8077], q:[0.7418, 0.2912], qb:[0.4505, 0.4505], phi:[0.5165]] [X:[], M:[[4, 4], [-12, -12], [4, 4], [12, 12], [-13, -1], [-1, -13]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ M_6$, $ M_5$, $ M_4$, $ M_1$, $ M_3$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_1^2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_6q_2\tilde{q}_1$, $ \phi_1q_1q_2$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ M_6^2$, $ M_5M_6$, $ M_5^2$, $ M_4q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_4M_6$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_4M_5$, $ \phi_1q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_1M_6$, $ M_3M_6$, $ M_1M_5$, $ M_3M_5$, $ M_4^2$, $ M_1M_4$, $ M_3M_4$, $ M_6\phi_1q_2^2$, $ M_5\phi_1q_2^2$, $ M_1^2$, $ M_1M_3$, $ M_3^2$ $M_4\phi_1q_2^2$, $ \phi_1q_2^2\tilde{q}_1^2$, $ \phi_1q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_2^2$ -1 2*t^2.23 + 2*t^2.42 + t^2.7 + 2*t^2.9 + t^3.3 + 2*t^3.77 + 3*t^4.25 + 3*t^4.45 + 4*t^4.65 + 3*t^4.85 + 2*t^4.93 + 6*t^5.13 + 4*t^5.32 + t^5.41 + 2*t^5.6 + 2*t^5.72 + 2*t^5.8 - t^6. + 4*t^6.2 + 4*t^6.48 + t^6.59 + 10*t^6.68 + 2*t^6.87 + 3*t^6.96 + 6*t^7.07 + 6*t^7.15 + 4*t^7.27 + 5*t^7.35 + 9*t^7.55 + 2*t^7.63 + 5*t^7.75 + 4*t^7.83 + 8*t^8.03 + t^8.11 + 3*t^8.14 - 2*t^8.23 + 2*t^8.31 - 6*t^8.42 + 7*t^8.51 + 6*t^8.62 + 2*t^8.7 + 2*t^8.9 - t^4.55/y - (2*t^6.97)/y + (5*t^7.65)/y + t^7.85/y + (2*t^7.93)/y + (8*t^8.13)/y + (4*t^8.32)/y + (2*t^8.52)/y + (2*t^8.6)/y + (2*t^8.72)/y + t^8.8/y - t^4.55*y - 2*t^6.97*y + 5*t^7.65*y + t^7.85*y + 2*t^7.93*y + 8*t^8.13*y + 4*t^8.32*y + 2*t^8.52*y + 2*t^8.6*y + 2*t^8.72*y + t^8.8*y (g1^7*t^2.23)/g2^5 + (g2^7*t^2.23)/g1^5 + t^2.42/(g1*g2^13) + t^2.42/(g1^13*g2) + g1^12*g2^12*t^2.7 + 2*g1^4*g2^4*t^2.9 + t^3.3/(g1^12*g2^12) + (g1^5*t^3.77)/g2^7 + (g2^5*t^3.77)/g1^7 + (g1^22*t^4.25)/g2^2 + g1^10*g2^10*t^4.25 + (g2^22*t^4.25)/g1^2 + (g1^14*t^4.45)/g2^10 + g1^2*g2^2*t^4.45 + (g2^14*t^4.45)/g1^10 + (g1^6*t^4.65)/g2^18 + (2*t^4.65)/(g1^6*g2^6) + (g2^6*t^4.65)/g1^18 + t^4.85/(g1^2*g2^26) + t^4.85/(g1^14*g2^14) + t^4.85/(g1^26*g2^2) + g1^19*g2^7*t^4.93 + g1^7*g2^19*t^4.93 + (3*g1^11*t^5.13)/g2 + (3*g2^11*t^5.13)/g1 + (2*g1^3*t^5.32)/g2^9 + (2*g2^3*t^5.32)/g1^9 + g1^24*g2^24*t^5.41 + 2*g1^16*g2^16*t^5.6 + t^5.72/(g1^13*g2^25) + t^5.72/(g1^25*g2^13) + 2*g1^8*g2^8*t^5.8 - t^6. + (g1^4*t^6.2)/g2^20 + (2*t^6.2)/(g1^8*g2^8) + (g2^4*t^6.2)/g1^20 + (g1^29*t^6.48)/g2^7 + g1^17*g2^5*t^6.48 + g1^5*g2^17*t^6.48 + (g2^29*t^6.48)/g1^7 + t^6.59/(g1^24*g2^24) + (2*g1^21*t^6.68)/g2^15 + (3*g1^9*t^6.68)/g2^3 + (3*g2^9*t^6.68)/g1^3 + (2*g2^21*t^6.68)/g1^15 + (g1^13*t^6.87)/g2^23 + (g2^13*t^6.87)/g1^23 + g1^34*g2^10*t^6.96 + g1^22*g2^22*t^6.96 + g1^10*g2^34*t^6.96 + (g1^5*t^7.07)/g2^31 + (2*t^7.07)/(g1^7*g2^19) + (2*t^7.07)/(g1^19*g2^7) + (g2^5*t^7.07)/g1^31 + 2*g1^26*g2^2*t^7.15 + 2*g1^14*g2^14*t^7.15 + 2*g1^2*g2^26*t^7.15 + t^7.27/(g1^3*g2^39) + t^7.27/(g1^15*g2^27) + t^7.27/(g1^27*g2^15) + t^7.27/(g1^39*g2^3) + (2*g1^18*t^7.35)/g2^6 + g1^6*g2^6*t^7.35 + (2*g2^18*t^7.35)/g1^6 + (3*g1^10*t^7.55)/g2^14 + (3*t^7.55)/(g1^2*g2^2) + (3*g2^10*t^7.55)/g1^14 + g1^31*g2^19*t^7.63 + g1^19*g2^31*t^7.63 + (2*g1^2*t^7.75)/g2^22 + t^7.75/(g1^10*g2^10) + (2*g2^2*t^7.75)/g1^22 + 2*g1^23*g2^11*t^7.83 + 2*g1^11*g2^23*t^7.83 + (g1^27*t^8.03)/g2^9 + 3*g1^15*g2^3*t^8.03 + 3*g1^3*g2^15*t^8.03 + (g2^27*t^8.03)/g1^9 + g1^36*g2^36*t^8.11 + t^8.14/(g1^14*g2^38) + t^8.14/(g1^26*g2^26) + t^8.14/(g1^38*g2^14) - (g1^7*t^8.23)/g2^5 - (g2^7*t^8.23)/g1^5 + 2*g1^28*g2^28*t^8.31 - (3*t^8.42)/(g1*g2^13) - (3*t^8.42)/(g1^13*g2) + (g1^44*t^8.51)/g2^4 + g1^32*g2^8*t^8.51 + 3*g1^20*g2^20*t^8.51 + g1^8*g2^32*t^8.51 + (g2^44*t^8.51)/g1^4 + (g1^3*t^8.62)/g2^33 + (2*t^8.62)/(g1^9*g2^21) + (2*t^8.62)/(g1^21*g2^9) + (g2^3*t^8.62)/g1^33 + (g1^36*t^8.7)/g2^12 + (g2^36*t^8.7)/g1^12 + (2*g1^28*t^8.9)/g2^20 + (g1^16*t^8.9)/g2^8 - 4*g1^4*g2^4*t^8.9 + (g2^16*t^8.9)/g1^8 + (2*g2^28*t^8.9)/g1^20 - t^4.55/(g1^2*g2^2*y) - t^6.97/(g1^3*g2^15*y) - t^6.97/(g1^15*g2^3*y) + (g1^6*t^7.65)/(g2^18*y) + (3*t^7.65)/(g1^6*g2^6*y) + (g2^6*t^7.65)/(g1^18*y) + t^7.85/(g1^14*g2^14*y) + (g1^19*g2^7*t^7.93)/y + (g1^7*g2^19*t^7.93)/y + (4*g1^11*t^8.13)/(g2*y) + (4*g2^11*t^8.13)/(g1*y) + (2*g1^3*t^8.32)/(g2^9*y) + (2*g2^3*t^8.32)/(g1^9*y) + t^8.52/(g1^5*g2^17*y) + t^8.52/(g1^17*g2^5*y) + (2*g1^16*g2^16*t^8.6)/y + t^8.72/(g1^13*g2^25*y) + t^8.72/(g1^25*g2^13*y) + (g1^8*g2^8*t^8.8)/y - (t^4.55*y)/(g1^2*g2^2) - (t^6.97*y)/(g1^3*g2^15) - (t^6.97*y)/(g1^15*g2^3) + (g1^6*t^7.65*y)/g2^18 + (3*t^7.65*y)/(g1^6*g2^6) + (g2^6*t^7.65*y)/g1^18 + (t^7.85*y)/(g1^14*g2^14) + g1^19*g2^7*t^7.93*y + g1^7*g2^19*t^7.93*y + (4*g1^11*t^8.13*y)/g2 + (4*g2^11*t^8.13*y)/g1 + (2*g1^3*t^8.32*y)/g2^9 + (2*g2^3*t^8.32*y)/g1^9 + (t^8.52*y)/(g1^5*g2^17) + (t^8.52*y)/(g1^17*g2^5) + 2*g1^16*g2^16*t^8.6*y + (t^8.72*y)/(g1^13*g2^25) + (t^8.72*y)/(g1^25*g2^13) + g1^8*g2^8*t^8.8*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1783 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_2M_4$ + $ M_5q_1\tilde{q}_1$ 0.617 0.7971 0.7742 [X:[], M:[0.9586, 1.1242, 0.9586, 0.8758, 0.8061], q:[0.7396, 0.3018], qb:[0.4542, 0.4215], phi:[0.5207]] t^2.17 + t^2.27 + t^2.42 + t^2.63 + 2*t^2.88 + t^3.37 + t^3.48 + t^3.73 + t^3.83 + t^4.09 + t^4.19 + t^4.29 + t^4.34 + t^4.44 + t^4.54 + t^4.59 + t^4.69 + t^4.8 + t^4.84 + t^4.9 + 3*t^5.05 + 2*t^5.14 + t^5.25 + 2*t^5.29 + 2*t^5.5 + t^5.65 + 3*t^5.75 + t^5.79 + t^5.9 - t^6. - t^4.56/y - t^4.56*y detail