Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1670 SU2adj1nf2 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2q_2\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_1q_2$ + $ M_7\phi_1q_2^2$ + $ M_8\phi_1\tilde{q}_2^2$ 0.7472 0.9679 0.772 [X:[], M:[0.9858, 1.1174, 0.9858, 0.6761, 0.7794, 0.7794, 0.6761, 0.6761], q:[0.7794, 0.4413], qb:[0.5729, 0.4413], phi:[0.4413]] [X:[], M:[[-7, 1], [4, 0], [-11, -1], [6, 0], [-1, -1], [3, 1], [10, 2], [2, -2]], q:[[1, 0], [-4, -1]], qb:[[11, 0], [0, 1]], phi:[[-2, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_4$, $ M_8$, $ M_7$, $ M_5$, $ M_6$, $ \phi_1^2$, $ M_3$, $ M_1$, $ M_2$, $ M_4^2$, $ M_7M_8$, $ q_1\tilde{q}_1$, $ M_8^2$, $ M_4M_8$, $ M_4M_7$, $ M_7^2$, $ M_5M_8$, $ M_4M_5$, $ M_6M_8$, $ \phi_1q_2\tilde{q}_1$, $ M_4M_6$, $ M_5M_7$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_6M_7$, $ M_5M_6$, $ M_4\phi_1^2$, $ M_5^2$, $ M_8\phi_1^2$, $ M_6^2$, $ M_7\phi_1^2$, $ \phi_1\tilde{q}_1^2$, $ M_3M_8$, $ M_3M_4$, $ M_1M_8$, $ M_5\phi_1^2$, $ M_1M_4$, $ M_3M_7$, $ M_6\phi_1^2$, $ M_1M_7$, $ M_1M_5$, $ M_3M_6$, $ \phi_1^4$, $ M_3M_5$, $ M_1M_6$, $ M_2M_4$, $ M_2M_8$, $ M_2M_7$, $ M_2M_5$, $ M_2M_6$, $ M_1M_3$, $ M_3^2$, $ M_1^2$ . -4 3*t^2.03 + 2*t^2.34 + t^2.65 + 2*t^2.96 + t^3.35 + 7*t^4.06 + 8*t^4.37 + 6*t^4.68 + t^4.76 + 8*t^4.99 + 5*t^5.3 + 3*t^5.38 + 2*t^5.69 + 3*t^5.91 - 4*t^6. + 13*t^6.09 + 18*t^6.39 - t^6.62 + 19*t^6.7 + 3*t^6.79 - 2*t^6.93 + 22*t^7.01 + 2*t^7.1 + 15*t^7.32 + 7*t^7.41 + 6*t^7.63 + 6*t^7.72 + 9*t^7.94 - 13*t^8.03 + 22*t^8.11 + 6*t^8.25 - 12*t^8.34 + 32*t^8.42 - 7*t^8.65 + 38*t^8.73 + 7*t^8.82 + 4*t^8.87 - 18*t^8.96 - t^4.32/y - (3*t^6.35)/y - (2*t^6.66)/y + (3*t^7.06)/y - (2*t^7.28)/y + (8*t^7.37)/y + (4*t^7.68)/y + (10*t^7.99)/y + (7*t^8.3)/y - (3*t^8.38)/y + (2*t^8.61)/y - (4*t^8.69)/y + t^8.91/y - t^4.32*y - 3*t^6.35*y - 2*t^6.66*y + 3*t^7.06*y - 2*t^7.28*y + 8*t^7.37*y + 4*t^7.68*y + 10*t^7.99*y + 7*t^8.3*y - 3*t^8.38*y + 2*t^8.61*y - 4*t^8.69*y + t^8.91*y g1^6*t^2.03 + (g1^2*t^2.03)/g2^2 + g1^10*g2^2*t^2.03 + t^2.34/(g1*g2) + g1^3*g2*t^2.34 + t^2.65/g1^4 + t^2.96/(g1^11*g2) + (g2*t^2.96)/g1^7 + g1^4*t^3.35 + 3*g1^12*t^4.06 + (g1^4*t^4.06)/g2^4 + (g1^8*t^4.06)/g2^2 + g1^16*g2^2*t^4.06 + g1^20*g2^4*t^4.06 + (g1*t^4.37)/g2^3 + (3*g1^5*t^4.37)/g2 + 3*g1^9*g2*t^4.37 + g1^13*g2^3*t^4.37 + 2*g1^2*t^4.68 + (2*t^4.68)/(g1^2*g2^2) + 2*g1^6*g2^2*t^4.68 + g1^20*t^4.76 + t^4.99/(g1^9*g2^3) + (3*t^4.99)/(g1^5*g2) + (3*g2*t^4.99)/g1 + g1^3*g2^3*t^4.99 + (3*t^5.3)/g1^8 + t^5.3/(g1^12*g2^2) + (g2^2*t^5.3)/g1^4 + g1^10*t^5.38 + (g1^6*t^5.38)/g2^2 + g1^14*g2^2*t^5.38 + (g1^3*t^5.69)/g2 + g1^7*g2*t^5.69 + t^5.91/g1^18 + t^5.91/(g1^22*g2^2) + (g2^2*t^5.91)/g1^14 - 2*t^6. - t^6./(g1^4*g2^2) - g1^4*g2^2*t^6. + 3*g1^18*t^6.09 + (g1^6*t^6.09)/g2^6 + (g1^10*t^6.09)/g2^4 + (3*g1^14*t^6.09)/g2^2 + 3*g1^22*g2^2*t^6.09 + g1^26*g2^4*t^6.09 + g1^30*g2^6*t^6.09 + (g1^3*t^6.39)/g2^5 + (3*g1^7*t^6.39)/g2^3 + (5*g1^11*t^6.39)/g2 + 5*g1^15*g2*t^6.39 + 3*g1^19*g2^3*t^6.39 + g1^23*g2^5*t^6.39 - t^6.62/g1^10 + 7*g1^8*t^6.7 + (2*t^6.7)/g2^4 + (4*g1^4*t^6.7)/g2^2 + 4*g1^12*g2^2*t^6.7 + 2*g1^16*g2^4*t^6.7 + g1^26*t^6.79 + (g1^22*t^6.79)/g2^2 + g1^30*g2^2*t^6.79 - t^6.93/(g1^17*g2) - (g2*t^6.93)/g1^13 + t^7.01/(g1^7*g2^5) + (4*t^7.01)/(g1^3*g2^3) + (6*g1*t^7.01)/g2 + 6*g1^5*g2*t^7.01 + 4*g1^9*g2^3*t^7.01 + g1^13*g2^5*t^7.01 + (g1^19*t^7.1)/g2 + g1^23*g2*t^7.1 + (5*t^7.32)/g1^2 + t^7.32/(g1^10*g2^4) + (4*t^7.32)/(g1^6*g2^2) + 4*g1^2*g2^2*t^7.32 + g1^6*g2^4*t^7.32 + 3*g1^16*t^7.41 + (g1^8*t^7.41)/g2^4 + (g1^12*t^7.41)/g2^2 + g1^20*g2^2*t^7.41 + g1^24*g2^4*t^7.41 + t^7.63/(g1^13*g2^3) + (2*t^7.63)/(g1^9*g2) + (2*g2*t^7.63)/g1^5 + (g2^3*t^7.63)/g1 + (g1^5*t^7.72)/g2^3 + (2*g1^9*t^7.72)/g2 + 2*g1^13*g2*t^7.72 + g1^17*g2^3*t^7.72 + (3*t^7.94)/g1^12 + t^7.94/(g1^20*g2^4) + (2*t^7.94)/(g1^16*g2^2) + (2*g2^2*t^7.94)/g1^8 + (g2^4*t^7.94)/g1^4 - 5*g1^6*t^8.03 - t^8.03/(g1^2*g2^4) - (3*g1^2*t^8.03)/g2^2 - 3*g1^10*g2^2*t^8.03 - g1^14*g2^4*t^8.03 + 6*g1^24*t^8.11 + (g1^8*t^8.11)/g2^8 + (g1^12*t^8.11)/g2^6 + (3*g1^16*t^8.11)/g2^4 + (3*g1^20*t^8.11)/g2^2 + 3*g1^28*g2^2*t^8.11 + 3*g1^32*g2^4*t^8.11 + g1^36*g2^6*t^8.11 + g1^40*g2^8*t^8.11 + t^8.25/(g1^23*g2^3) + (2*t^8.25)/(g1^19*g2) + (2*g2*t^8.25)/g1^15 + (g2^3*t^8.25)/g1^11 - t^8.34/(g1^5*g2^3) - (5*t^8.34)/(g1*g2) - 5*g1^3*g2*t^8.34 - g1^7*g2^3*t^8.34 + (g1^5*t^8.42)/g2^7 + (3*g1^9*t^8.42)/g2^5 + (5*g1^13*t^8.42)/g2^3 + (7*g1^17*t^8.42)/g2 + 7*g1^21*g2*t^8.42 + 5*g1^25*g2^3*t^8.42 + 3*g1^29*g2^5*t^8.42 + g1^33*g2^7*t^8.42 - (3*t^8.65)/g1^4 - (2*t^8.65)/(g1^8*g2^2) - 2*g2^2*t^8.65 + 8*g1^14*t^8.73 + (2*g1^2*t^8.73)/g2^6 + (4*g1^6*t^8.73)/g2^4 + (9*g1^10*t^8.73)/g2^2 + 9*g1^18*g2^2*t^8.73 + 4*g1^22*g2^4*t^8.73 + 2*g1^26*g2^6*t^8.73 + 3*g1^32*t^8.82 + (g1^24*t^8.82)/g2^4 + (g1^28*t^8.82)/g2^2 + g1^36*g2^2*t^8.82 + g1^40*g2^4*t^8.82 + t^8.87/(g1^33*g2^3) + t^8.87/(g1^29*g2) + (g2*t^8.87)/g1^25 + (g2^3*t^8.87)/g1^21 - (2*t^8.96)/(g1^15*g2^3) - (7*t^8.96)/(g1^11*g2) - (7*g2*t^8.96)/g1^7 - (2*g2^3*t^8.96)/g1^3 - t^4.32/(g1^2*y) - (g1^4*t^6.35)/y - t^6.35/(g2^2*y) - (g1^8*g2^2*t^6.35)/y - t^6.66/(g1^3*g2*y) - (g1*g2*t^6.66)/y + (g1^12*t^7.06)/y + (g1^8*t^7.06)/(g2^2*y) + (g1^16*g2^2*t^7.06)/y - t^7.28/(g1^13*g2*y) - (g2*t^7.28)/(g1^9*y) + (g1*t^7.37)/(g2^3*y) + (3*g1^5*t^7.37)/(g2*y) + (3*g1^9*g2*t^7.37)/y + (g1^13*g2^3*t^7.37)/y + (2*g1^2*t^7.68)/y + t^7.68/(g1^2*g2^2*y) + (g1^6*g2^2*t^7.68)/y + t^7.99/(g1^9*g2^3*y) + (4*t^7.99)/(g1^5*g2*y) + (4*g2*t^7.99)/(g1*y) + (g1^3*g2^3*t^7.99)/y + (3*t^8.3)/(g1^8*y) + (2*t^8.3)/(g1^12*g2^2*y) + (2*g2^2*t^8.3)/(g1^4*y) - (g1^10*t^8.38)/y - (g1^2*t^8.38)/(g2^4*y) - (g1^18*g2^4*t^8.38)/y + t^8.61/(g1^15*g2*y) + (g2*t^8.61)/(g1^11*y) - t^8.69/(g1*g2^3*y) - (g1^3*t^8.69)/(g2*y) - (g1^7*g2*t^8.69)/y - (g1^11*g2^3*t^8.69)/y + t^8.91/(g1^18*y) - (t^4.32*y)/g1^2 - g1^4*t^6.35*y - (t^6.35*y)/g2^2 - g1^8*g2^2*t^6.35*y - (t^6.66*y)/(g1^3*g2) - g1*g2*t^6.66*y + g1^12*t^7.06*y + (g1^8*t^7.06*y)/g2^2 + g1^16*g2^2*t^7.06*y - (t^7.28*y)/(g1^13*g2) - (g2*t^7.28*y)/g1^9 + (g1*t^7.37*y)/g2^3 + (3*g1^5*t^7.37*y)/g2 + 3*g1^9*g2*t^7.37*y + g1^13*g2^3*t^7.37*y + 2*g1^2*t^7.68*y + (t^7.68*y)/(g1^2*g2^2) + g1^6*g2^2*t^7.68*y + (t^7.99*y)/(g1^9*g2^3) + (4*t^7.99*y)/(g1^5*g2) + (4*g2*t^7.99*y)/g1 + g1^3*g2^3*t^7.99*y + (3*t^8.3*y)/g1^8 + (2*t^8.3*y)/(g1^12*g2^2) + (2*g2^2*t^8.3*y)/g1^4 - g1^10*t^8.38*y - (g1^2*t^8.38*y)/g2^4 - g1^18*g2^4*t^8.38*y + (t^8.61*y)/(g1^15*g2) + (g2*t^8.61*y)/g1^11 - (t^8.69*y)/(g1*g2^3) - (g1^3*t^8.69*y)/g2 - g1^7*g2*t^8.69*y - g1^11*g2^3*t^8.69*y + (t^8.91*y)/g1^18


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1074 SU2adj1nf2 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2q_2\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_1q_2$ + $ M_7\phi_1q_2^2$ 0.7264 0.927 0.7837 [X:[], M:[0.9825, 1.1181, 0.986, 0.6772, 0.7813, 0.7778, 0.6737], q:[0.7795, 0.4427], qb:[0.5748, 0.4392], phi:[0.4409]] t^2.02 + t^2.03 + t^2.33 + t^2.34 + t^2.65 + t^2.95 + t^2.96 + t^3.35 + t^3.96 + t^4.04 + t^4.05 + 2*t^4.06 + t^4.35 + 3*t^4.36 + 2*t^4.38 + 2*t^4.67 + 2*t^4.68 + t^4.69 + t^4.77 + t^4.97 + 3*t^4.98 + 2*t^4.99 + t^5.28 + 3*t^5.29 + t^5.3 + t^5.38 + t^5.39 + t^5.69 + t^5.7 + t^5.9 + t^5.91 + t^5.92 + t^5.98 - 2*t^6. - t^4.32/y - t^4.32*y detail