Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1074 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{1}q_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ 0.7264 0.927 0.7837 [M:[0.9825, 1.1181, 0.986, 0.6772, 0.7813, 0.7778, 0.6737], q:[0.7795, 0.4427], qb:[0.5748, 0.4392], phi:[0.4409]] [M:[[-7, 1], [4, 0], [-11, -1], [6, 0], [-1, -1], [3, 1], [10, 2]], q:[[1, 0], [-4, -1]], qb:[[11, 0], [0, 1]], phi:[[-2, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{7}$, ${ }M_{4}$, ${ }M_{6}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }M_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{7}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{4}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{6}M_{7}$, ${ }M_{4}M_{6}$, ${ }M_{5}M_{7}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{6}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{5}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{7}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{7}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{6}$, ${ }\phi_{1}^{4}$, ${ }M_{3}M_{5}$, ${ }M_{2}M_{7}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{6}$, ${ }M_{2}M_{5}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$ ${}$ -2 t^2.021 + t^2.032 + t^2.333 + t^2.344 + t^2.646 + t^2.948 + t^2.958 + t^3.354 + t^3.958 + t^4.042 + t^4.053 + 2*t^4.063 + t^4.355 + 3*t^4.365 + 2*t^4.375 + 2*t^4.667 + 2*t^4.677 + t^4.688 + t^4.772 + t^4.969 + 3*t^4.979 + 2*t^4.989 + t^5.281 + 3*t^5.291 + t^5.302 + t^5.376 + t^5.386 + t^5.688 + t^5.698 + t^5.895 + t^5.905 + t^5.916 + t^5.979 - 2*t^6. - t^6.01 + t^6.064 + t^6.074 + 2*t^6.084 + 2*t^6.095 + t^6.292 + t^6.302 + t^6.376 + 3*t^6.386 + 4*t^6.396 + 2*t^6.407 + t^6.604 - t^6.614 + 2*t^6.688 + 4*t^6.698 + 5*t^6.709 + 2*t^6.719 + t^6.793 + t^6.803 + t^6.906 - t^6.926 + t^6.99 + 4*t^7. + 5*t^7.011 + 3*t^7.021 + t^7.031 + t^7.105 + t^7.116 + t^7.302 + 5*t^7.312 + 4*t^7.323 + t^7.333 + t^7.397 + t^7.407 + 2*t^7.417 + t^7.614 + 2*t^7.625 + 2*t^7.635 + t^7.645 + t^7.709 + 2*t^7.719 + t^7.73 + 2*t^7.916 + 2*t^7.927 + 2*t^7.937 + t^7.947 + t^8.001 - t^8.021 - 4*t^8.032 - t^8.042 + t^8.085 + t^8.095 + 2*t^8.105 + 2*t^8.116 + 3*t^8.126 + t^8.229 + 2*t^8.239 + 2*t^8.249 + t^8.259 + t^8.313 + 2*t^8.323 - 3*t^8.333 - 5*t^8.344 - t^8.354 + t^8.397 + 3*t^8.407 + 4*t^8.418 + 4*t^8.428 + 2*t^8.438 + 2*t^8.625 - 2*t^8.646 - t^8.656 + 2*t^8.709 + 4*t^8.72 + 8*t^8.73 + 4*t^8.74 + 2*t^8.751 + t^8.814 + t^8.824 + 2*t^8.835 + t^8.843 + t^8.853 + t^8.863 + t^8.874 + t^8.927 + t^8.937 - 5*t^8.948 - 6*t^8.958 - t^8.968 - t^4.323/y - t^6.344/y - t^6.354/y - t^6.656/y - t^6.667/y + t^7.053/y - t^7.27/y - t^7.281/y + t^7.355/y + (3*t^7.365)/y + (2*t^7.375)/y + t^7.667/y + (2*t^7.677)/y + t^7.969/y + (4*t^7.979)/y + (3*t^7.989)/y + t^8.281/y + (3*t^8.291)/y + (2*t^8.302)/y - t^8.365/y + t^8.593/y + t^8.604/y - t^8.677/y - t^8.688/y + t^8.905/y + t^8.979/y - t^4.323*y - t^6.344*y - t^6.354*y - t^6.656*y - t^6.667*y + t^7.053*y - t^7.27*y - t^7.281*y + t^7.355*y + 3*t^7.365*y + 2*t^7.375*y + t^7.667*y + 2*t^7.677*y + t^7.969*y + 4*t^7.979*y + 3*t^7.989*y + t^8.281*y + 3*t^8.291*y + 2*t^8.302*y - t^8.365*y + t^8.593*y + t^8.604*y - t^8.677*y - t^8.688*y + t^8.905*y + t^8.979*y g1^10*g2^2*t^2.021 + g1^6*t^2.032 + g1^3*g2*t^2.333 + t^2.344/(g1*g2) + t^2.646/g1^4 + (g2*t^2.948)/g1^7 + t^2.958/(g1^11*g2) + g1^4*t^3.354 + (g2^2*t^3.958)/g1^2 + g1^20*g2^4*t^4.042 + g1^16*g2^2*t^4.053 + 2*g1^12*t^4.063 + g1^13*g2^3*t^4.355 + 3*g1^9*g2*t^4.365 + (2*g1^5*t^4.375)/g2 + 2*g1^6*g2^2*t^4.667 + 2*g1^2*t^4.677 + t^4.688/(g1^2*g2^2) + g1^20*t^4.772 + g1^3*g2^3*t^4.969 + (3*g2*t^4.979)/g1 + (2*t^4.989)/(g1^5*g2) + (g2^2*t^5.281)/g1^4 + (3*t^5.291)/g1^8 + t^5.302/(g1^12*g2^2) + g1^14*g2^2*t^5.376 + g1^10*t^5.386 + g1^7*g2*t^5.688 + (g1^3*t^5.698)/g2 + (g2^2*t^5.895)/g1^14 + t^5.905/g1^18 + t^5.916/(g1^22*g2^2) + g1^8*g2^4*t^5.979 - 2*t^6. - t^6.01/(g1^4*g2^2) + g1^30*g2^6*t^6.064 + g1^26*g2^4*t^6.074 + 2*g1^22*g2^2*t^6.084 + 2*g1^18*t^6.095 + g1*g2^3*t^6.292 + (g2*t^6.302)/g1^3 + g1^23*g2^5*t^6.376 + 3*g1^19*g2^3*t^6.386 + 4*g1^15*g2*t^6.396 + (2*g1^11*t^6.407)/g2 + (g2^2*t^6.604)/g1^6 - t^6.614/g1^10 + 2*g1^16*g2^4*t^6.688 + 4*g1^12*g2^2*t^6.698 + 5*g1^8*t^6.709 + (2*g1^4*t^6.719)/g2^2 + g1^30*g2^2*t^6.793 + g1^26*t^6.803 + (g2^3*t^6.906)/g1^9 - t^6.926/(g1^17*g2) + g1^13*g2^5*t^6.99 + 4*g1^9*g2^3*t^7. + 5*g1^5*g2*t^7.011 + (3*g1*t^7.021)/g2 + t^7.031/(g1^3*g2^3) + g1^23*g2*t^7.105 + (g1^19*t^7.116)/g2 + g1^6*g2^4*t^7.302 + 5*g1^2*g2^2*t^7.312 + (4*t^7.323)/g1^2 + t^7.333/(g1^6*g2^2) + g1^24*g2^4*t^7.397 + g1^20*g2^2*t^7.407 + 2*g1^16*t^7.417 + (g2^3*t^7.614)/g1 + (2*g2*t^7.625)/g1^5 + (2*t^7.635)/(g1^9*g2) + t^7.645/(g1^13*g2^3) + g1^17*g2^3*t^7.709 + 2*g1^13*g2*t^7.719 + (g1^9*t^7.73)/g2 + (2*g2^4*t^7.916)/g1^4 + (2*g2^2*t^7.927)/g1^8 + (2*t^7.937)/g1^12 + t^7.947/(g1^16*g2^2) + g1^18*g2^6*t^8.001 - g1^10*g2^2*t^8.021 - 4*g1^6*t^8.032 - (g1^2*t^8.042)/g2^2 + g1^40*g2^8*t^8.085 + g1^36*g2^6*t^8.095 + 2*g1^32*g2^4*t^8.105 + 2*g1^28*g2^2*t^8.116 + 3*g1^24*t^8.126 + (g2^3*t^8.229)/g1^11 + (2*g2*t^8.239)/g1^15 + (2*t^8.249)/(g1^19*g2) + t^8.259/(g1^23*g2^3) + g1^11*g2^5*t^8.313 + 2*g1^7*g2^3*t^8.323 - 3*g1^3*g2*t^8.333 - (5*t^8.344)/(g1*g2) - t^8.354/(g1^5*g2^3) + g1^33*g2^7*t^8.397 + 3*g1^29*g2^5*t^8.407 + 4*g1^25*g2^3*t^8.418 + 4*g1^21*g2*t^8.428 + (2*g1^17*t^8.438)/g2 + 2*g1^4*g2^4*t^8.625 - (2*t^8.646)/g1^4 - t^8.656/(g1^8*g2^2) + 2*g1^26*g2^6*t^8.709 + 4*g1^22*g2^4*t^8.72 + 8*g1^18*g2^2*t^8.73 + 4*g1^14*t^8.74 + (2*g1^10*t^8.751)/g2^2 + g1^40*g2^4*t^8.814 + g1^36*g2^2*t^8.824 + 2*g1^32*t^8.835 + (g2^3*t^8.843)/g1^21 + (g2*t^8.853)/g1^25 + t^8.863/(g1^29*g2) + t^8.874/(g1^33*g2^3) + g1*g2^5*t^8.927 + (g2^3*t^8.937)/g1^3 - (5*g2*t^8.948)/g1^7 - (6*t^8.958)/(g1^11*g2) - t^8.968/(g1^15*g2^3) - t^4.323/(g1^2*y) - (g1^8*g2^2*t^6.344)/y - (g1^4*t^6.354)/y - (g1*g2*t^6.656)/y - t^6.667/(g1^3*g2*y) + (g1^16*g2^2*t^7.053)/y - (g2*t^7.27)/(g1^9*y) - t^7.281/(g1^13*g2*y) + (g1^13*g2^3*t^7.355)/y + (3*g1^9*g2*t^7.365)/y + (2*g1^5*t^7.375)/(g2*y) + (g1^6*g2^2*t^7.667)/y + (2*g1^2*t^7.677)/y + (g1^3*g2^3*t^7.969)/y + (4*g2*t^7.979)/(g1*y) + (3*t^7.989)/(g1^5*g2*y) + (g2^2*t^8.281)/(g1^4*y) + (3*t^8.291)/(g1^8*y) + (2*t^8.302)/(g1^12*g2^2*y) - (g1^18*g2^4*t^8.365)/y + (g2*t^8.593)/(g1^11*y) + t^8.604/(g1^15*g2*y) - (g1^11*g2^3*t^8.677)/y - (g1^7*g2*t^8.688)/y + t^8.905/(g1^18*y) + (g1^8*g2^4*t^8.979)/y - (t^4.323*y)/g1^2 - g1^8*g2^2*t^6.344*y - g1^4*t^6.354*y - g1*g2*t^6.656*y - (t^6.667*y)/(g1^3*g2) + g1^16*g2^2*t^7.053*y - (g2*t^7.27*y)/g1^9 - (t^7.281*y)/(g1^13*g2) + g1^13*g2^3*t^7.355*y + 3*g1^9*g2*t^7.365*y + (2*g1^5*t^7.375*y)/g2 + g1^6*g2^2*t^7.667*y + 2*g1^2*t^7.677*y + g1^3*g2^3*t^7.969*y + (4*g2*t^7.979*y)/g1 + (3*t^7.989*y)/(g1^5*g2) + (g2^2*t^8.281*y)/g1^4 + (3*t^8.291*y)/g1^8 + (2*t^8.302*y)/(g1^12*g2^2) - g1^18*g2^4*t^8.365*y + (g2*t^8.593*y)/g1^11 + (t^8.604*y)/(g1^15*g2) - g1^11*g2^3*t^8.677*y - g1^7*g2*t^8.688*y + (t^8.905*y)/g1^18 + g1^8*g2^4*t^8.979*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1670 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{1}q_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{8}\phi_{1}\tilde{q}_{2}^{2}$ 0.7472 0.9679 0.772 [M:[0.9858, 1.1174, 0.9858, 0.6761, 0.7794, 0.7794, 0.6761, 0.6761], q:[0.7794, 0.4413], qb:[0.5729, 0.4413], phi:[0.4413]] 3*t^2.028 + 2*t^2.338 + t^2.648 + 2*t^2.957 + t^3.352 + 7*t^4.057 + 8*t^4.366 + 6*t^4.676 + t^4.761 + 8*t^4.986 + 5*t^5.296 + 3*t^5.381 + 2*t^5.69 + 3*t^5.915 - 4*t^6. - t^4.324/y - t^4.324*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
667 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{1}q_{2}$ 0.7056 0.8857 0.7967 [M:[0.9833, 1.1185, 0.9833, 0.6778, 0.7796, 0.7796], q:[0.7796, 0.4407], qb:[0.576, 0.4407], phi:[0.4407]] t^2.033 + 2*t^2.339 + t^2.644 + 2*t^2.95 + t^3.356 + 2*t^3.967 + 2*t^4.067 + 4*t^4.372 + 4*t^4.678 + t^4.778 + 4*t^4.983 + 5*t^5.289 + t^5.389 + 2*t^5.695 + 3*t^5.9 - 2*t^6. - t^4.322/y - t^4.322*y detail