Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
4055 | SU2adj1nf2 | ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{5}q_{1}q_{2}$ + ${ }M_{6}q_{1}q_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{8}\phi_{1}\tilde{q}_{2}^{2}$ | 0.7472 | 0.9679 | 0.772 | [M:[0.9858, 1.1174, 0.9858, 0.6761, 0.7794, 0.7794, 0.6761, 0.6761], q:[0.7794, 0.4413], qb:[0.5729, 0.4413], phi:[0.4413]] | [M:[[9], [-4], [9], [-6], [-1], [-1], [-6], [-6]], q:[[-1], [2]], qb:[[-11], [2]], phi:[[2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{4}$, ${ }M_{7}$, ${ }M_{8}$, ${ }M_{5}$, ${ }M_{6}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }M_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{7}M_{8}$, ${ }M_{8}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{4}M_{5}$, ${ }M_{4}M_{6}$, ${ }M_{5}M_{7}$, ${ }M_{6}M_{7}$, ${ }M_{5}M_{8}$, ${ }M_{6}M_{8}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{7}$, ${ }M_{3}M_{7}$, ${ }M_{1}M_{8}$, ${ }M_{3}M_{8}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{6}$, ${ }\phi_{1}^{4}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{7}$, ${ }M_{2}M_{8}$, ${ }M_{2}M_{5}$, ${ }M_{2}M_{6}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$ | ${}$ | -4 | 3*t^2.028 + 2*t^2.338 + t^2.648 + 2*t^2.957 + t^3.352 + 7*t^4.057 + 8*t^4.366 + 6*t^4.676 + t^4.761 + 8*t^4.986 + 5*t^5.296 + 3*t^5.381 + 2*t^5.69 + 3*t^5.915 - 4*t^6. + 13*t^6.085 + 18*t^6.395 - t^6.619 + 19*t^6.704 + 3*t^6.79 - 2*t^6.929 + 22*t^7.014 + 2*t^7.099 + 15*t^7.324 + 7*t^7.409 + 6*t^7.634 + 6*t^7.719 + 9*t^7.943 - 13*t^8.028 + 22*t^8.113 + 6*t^8.253 - 12*t^8.338 + 32*t^8.423 - 7*t^8.648 + 38*t^8.733 + 7*t^8.818 + 4*t^8.872 - 18*t^8.957 - t^4.324/y - (3*t^6.352)/y - (2*t^6.662)/y + (3*t^7.057)/y - (2*t^7.281)/y + (8*t^7.366)/y + (4*t^7.676)/y + (10*t^7.986)/y + (7*t^8.296)/y - (3*t^8.381)/y + (2*t^8.605)/y - (4*t^8.69)/y + t^8.915/y - t^4.324*y - 3*t^6.352*y - 2*t^6.662*y + 3*t^7.057*y - 2*t^7.281*y + 8*t^7.366*y + 4*t^7.676*y + 10*t^7.986*y + 7*t^8.296*y - 3*t^8.381*y + 2*t^8.605*y - 4*t^8.69*y + t^8.915*y | (3*t^2.028)/g1^6 + (2*t^2.338)/g1 + g1^4*t^2.648 + 2*g1^9*t^2.957 + t^3.352/g1^4 + (7*t^4.057)/g1^12 + (8*t^4.366)/g1^7 + (6*t^4.676)/g1^2 + t^4.761/g1^20 + 8*g1^3*t^4.986 + 5*g1^8*t^5.296 + (3*t^5.381)/g1^10 + (2*t^5.69)/g1^5 + 3*g1^18*t^5.915 - 4*t^6. + (13*t^6.085)/g1^18 + (18*t^6.395)/g1^13 - g1^10*t^6.619 + (19*t^6.704)/g1^8 + (3*t^6.79)/g1^26 - 2*g1^15*t^6.929 + (22*t^7.014)/g1^3 + (2*t^7.099)/g1^21 + 15*g1^2*t^7.324 + (7*t^7.409)/g1^16 + 6*g1^7*t^7.634 + (6*t^7.719)/g1^11 + 9*g1^12*t^7.943 - (13*t^8.028)/g1^6 + (22*t^8.113)/g1^24 + 6*g1^17*t^8.253 - (12*t^8.338)/g1 + (32*t^8.423)/g1^19 - 7*g1^4*t^8.648 + (38*t^8.733)/g1^14 + (7*t^8.818)/g1^32 + 4*g1^27*t^8.872 - 18*g1^9*t^8.957 - (g1^2*t^4.324)/y - (3*t^6.352)/(g1^4*y) - (2*g1*t^6.662)/y + (3*t^7.057)/(g1^12*y) - (2*g1^11*t^7.281)/y + (8*t^7.366)/(g1^7*y) + (4*t^7.676)/(g1^2*y) + (10*g1^3*t^7.986)/y + (7*g1^8*t^8.296)/y - (3*t^8.381)/(g1^10*y) + (2*g1^13*t^8.605)/y - (4*t^8.69)/(g1^5*y) + (g1^18*t^8.915)/y - g1^2*t^4.324*y - (3*t^6.352*y)/g1^4 - 2*g1*t^6.662*y + (3*t^7.057*y)/g1^12 - 2*g1^11*t^7.281*y + (8*t^7.366*y)/g1^7 + (4*t^7.676*y)/g1^2 + 10*g1^3*t^7.986*y + 7*g1^8*t^8.296*y - (3*t^8.381*y)/g1^10 + 2*g1^13*t^8.605*y - (4*t^8.69*y)/g1^5 + g1^18*t^8.915*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
1659 | SU2adj1nf2 | ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{5}q_{1}q_{2}$ + ${ }M_{6}q_{1}q_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ | 0.7264 | 0.9268 | 0.7838 | [M:[0.9847, 1.1179, 0.9847, 0.6769, 0.7795, 0.7795, 0.6769], q:[0.7795, 0.441], qb:[0.5743, 0.441], phi:[0.441]] | 2*t^2.031 + 2*t^2.338 + t^2.646 + 2*t^2.954 + t^3.354 + t^3.969 + 4*t^4.061 + 6*t^4.369 + 5*t^4.677 + t^4.769 + 6*t^4.985 + 5*t^5.292 + 2*t^5.384 + 2*t^5.692 + 3*t^5.908 - 2*t^6. - t^4.323/y - t^4.323*y | detail |