Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1460 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_1^2$ + $ M_5M_6$ + $ M_7\phi_1q_2^2$ 0.7401 0.9227 0.802 [X:[], M:[1.0, 0.845, 0.8515, 0.9935, 1.0065, 0.9935, 0.6938], q:[0.5775, 0.4225], qb:[0.571, 0.584], phi:[0.4612]] [X:[], M:[[0, 0], [-4, -4], [-6, -2], [2, -2], [-2, 2], [2, -2], [5, 5]], q:[[2, 2], [-2, -2]], qb:[[4, 0], [0, 4]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_7$, $ M_2$, $ M_3$, $ \phi_1^2$, $ M_4$, $ M_6$, $ M_1$, $ q_1\tilde{q}_2$, $ M_7^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1q_2$, $ \phi_1q_2\tilde{q}_2$, $ M_2M_7$, $ M_3M_7$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_1$, $ M_7\phi_1^2$, $ \phi_1q_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_4M_7$, $ M_6M_7$, $ M_2^2$, $ M_1M_7$, $ M_2M_3$, $ M_3^2$, $ M_2\phi_1^2$, $ M_3\phi_1^2$, $ M_2M_4$, $ M_2M_6$, $ M_1M_2$, $ M_3M_4$, $ M_3M_6$, $ \phi_1^4$, $ M_7q_1\tilde{q}_2$, $ M_4\phi_1^2$, $ M_6\phi_1^2$, $ M_1\phi_1^2$, $ M_4^2$, $ M_4M_6$, $ M_6^2$ . -3 t^2.08 + t^2.53 + t^2.55 + t^2.77 + 2*t^2.98 + t^3. + t^3.48 + t^4.16 + t^4.36 + t^4.38 + t^4.4 + t^4.62 + t^4.64 + t^4.81 + t^4.83 + 3*t^4.85 + t^4.87 + t^4.89 + 2*t^5.06 + t^5.07 + t^5.08 + t^5.09 + t^5.11 + t^5.3 + t^5.32 + t^5.52 + 3*t^5.53 + t^5.57 + 2*t^5.75 + t^5.77 + 2*t^5.96 - 3*t^6. - t^6.02 + t^6.24 + t^6.25 + t^6.47 + t^6.48 + t^6.7 + t^6.72 + t^6.89 + t^6.91 + t^6.92 + 3*t^6.93 + t^6.94 + t^6.95 + t^6.96 + 2*t^6.97 + t^7.13 + 2*t^7.14 + t^7.15 + t^7.16 + 2*t^7.17 + t^7.19 + 2*t^7.34 + 2*t^7.36 + 3*t^7.38 + 2*t^7.4 + t^7.42 + t^7.44 + t^7.58 + 2*t^7.6 + 5*t^7.62 + t^7.64 + t^7.65 + 2*t^7.66 + 2*t^7.79 + 2*t^7.81 + 4*t^7.83 + t^7.84 + 2*t^7.85 + t^7.86 + t^7.87 + t^7.88 + t^7.89 + t^8.04 + t^8.05 - t^8.06 + 2*t^8.07 - 5*t^8.08 + 2*t^8.09 - 2*t^8.1 - t^8.12 + t^8.28 + 3*t^8.3 + 3*t^8.33 + t^8.35 + t^8.37 + t^8.5 + 2*t^8.52 - 3*t^8.53 - 3*t^8.55 + 2*t^8.73 - 3*t^8.77 + t^8.78 - t^8.79 + t^8.8 + 2*t^8.94 - t^8.96 + t^8.97 - 7*t^8.98 + t^8.99 - t^4.38/y - t^6.47/y - t^6.92/y - t^6.94/y - t^7.15/y - t^7.36/y + t^7.4/y + (2*t^7.62)/y + t^7.64/y + t^7.83/y + (2*t^7.85)/y + (2*t^8.06)/y + t^8.08/y + t^8.09/y + (2*t^8.3)/y + t^8.32/y + (2*t^8.52)/y + (3*t^8.53)/y + t^8.57/y + (2*t^8.75)/y + t^8.77/y + t^8.96/y + (2*t^8.98)/y - t^4.38*y - t^6.47*y - t^6.92*y - t^6.94*y - t^7.15*y - t^7.36*y + t^7.4*y + 2*t^7.62*y + t^7.64*y + t^7.83*y + 2*t^7.85*y + 2*t^8.06*y + t^8.08*y + t^8.09*y + 2*t^8.3*y + t^8.32*y + 2*t^8.52*y + 3*t^8.53*y + t^8.57*y + 2*t^8.75*y + t^8.77*y + t^8.96*y + 2*t^8.98*y g1^5*g2^5*t^2.08 + t^2.53/(g1^4*g2^4) + t^2.55/(g1^6*g2^2) + t^2.77/(g1^2*g2^2) + (2*g1^2*t^2.98)/g2^2 + t^3. + g1^2*g2^6*t^3.48 + g1^10*g2^10*t^4.16 + (g1*t^4.36)/g2^3 + t^4.38/(g1*g2) + (g2*t^4.4)/g1^3 + g1*g2*t^4.62 + (g2^3*t^4.64)/g1 + (g1^7*t^4.81)/g2 + g1^5*g2*t^4.83 + 3*g1^3*g2^3*t^4.85 + g1*g2^5*t^4.87 + (g2^7*t^4.89)/g1 + 2*g1^7*g2^3*t^5.06 + t^5.07/(g1^8*g2^8) + g1^5*g2^5*t^5.08 + t^5.09/(g1^10*g2^6) + t^5.11/(g1^12*g2^4) + t^5.3/(g1^6*g2^6) + t^5.32/(g1^8*g2^4) + t^5.52/(g1^2*g2^6) + (3*t^5.53)/(g1^4*g2^4) + g1^7*g2^11*t^5.57 + (2*t^5.75)/g2^4 + t^5.77/(g1^2*g2^2) + (2*g1^4*t^5.96)/g2^4 - 3*t^6. - (g2^2*t^6.02)/g1^2 + g1^15*g2^15*t^6.24 + g2^4*t^6.25 + g1^4*g2^4*t^6.47 + g1^2*g2^6*t^6.48 + g1^6*g2^6*t^6.7 + g1^4*g2^8*t^6.72 + g1^12*g2^4*t^6.89 + g1^10*g2^6*t^6.91 + t^6.92/(g1^5*g2^5) + 3*g1^8*g2^8*t^6.93 + t^6.94/(g1^7*g2^3) + g1^6*g2^10*t^6.95 + t^6.96/(g1^9*g2) + 2*g1^4*g2^12*t^6.97 + t^7.13/(g1*g2^5) + 2*g1^12*g2^8*t^7.14 + t^7.15/(g1^3*g2^3) + g1^10*g2^10*t^7.16 + (2*t^7.17)/(g1^5*g2) + (g2*t^7.19)/g1^7 + (2*g1^3*t^7.34)/g2^5 + (2*g1*t^7.36)/g2^3 + (3*t^7.38)/(g1*g2) + (2*g2*t^7.4)/g1^3 + (g2^3*t^7.42)/g1^5 + (g2^5*t^7.44)/g1^7 + (g1^5*t^7.58)/g2^3 + t^7.6/(g1^12*g2^12) + (g1^3*t^7.6)/g2 + t^7.62/(g1^14*g2^10) + 4*g1*g2*t^7.62 + t^7.64/(g1^16*g2^8) + g1^12*g2^16*t^7.65 + t^7.66/(g1^18*g2^6) + (g2^5*t^7.66)/g1^3 + (2*g1^9*t^7.79)/g2^3 + (2*g1^7*t^7.81)/g2 + 4*g1^5*g2*t^7.83 + t^7.84/(g1^10*g2^10) + 2*g1^3*g2^3*t^7.85 + t^7.86/(g1^12*g2^8) + g1*g2^5*t^7.87 + t^7.88/(g1^14*g2^6) + (g2^7*t^7.89)/g1 + g1^9*g2*t^8.04 + t^8.05/(g1^6*g2^10) - g1^7*g2^3*t^8.06 + (2*t^8.07)/(g1^8*g2^8) - 5*g1^5*g2^5*t^8.08 + (2*t^8.09)/(g1^10*g2^6) - 2*g1^3*g2^7*t^8.1 - g1*g2^9*t^8.12 + t^8.28/(g1^4*g2^8) + (3*t^8.3)/(g1^6*g2^6) + 2*g1^5*g2^9*t^8.33 + g1^20*g2^20*t^8.33 + g1^3*g2^11*t^8.35 + g1*g2^13*t^8.37 + t^8.5/g2^8 + (2*t^8.52)/(g1^2*g2^6) - (3*t^8.53)/(g1^4*g2^4) - (4*t^8.55)/(g1^6*g2^2) + g1^9*g2^9*t^8.55 - t^8.57/g1^8 + g1^7*g2^11*t^8.57 + (2*g1^2*t^8.73)/g2^6 - (3*t^8.77)/(g1^2*g2^2) + g1^11*g2^11*t^8.78 - t^8.79/g1^4 + g1^9*g2^13*t^8.8 + (2*g1^6*t^8.94)/g2^6 - (g1^4*t^8.96)/g2^4 + g1^17*g2^9*t^8.97 - (7*g1^2*t^8.98)/g2^2 + g1^15*g2^11*t^8.99 - t^4.38/(g1*g2*y) - (g1^4*g2^4*t^6.47)/y - t^6.92/(g1^5*g2^5*y) - t^6.94/(g1^7*g2^3*y) - t^7.15/(g1^3*g2^3*y) - (g1*t^7.36)/(g2^3*y) + (g2*t^7.4)/(g1^3*y) + (2*g1*g2*t^7.62)/y + (g2^3*t^7.64)/(g1*y) + (g1^5*g2*t^7.83)/y + (2*g1^3*g2^3*t^7.85)/y + (2*g1^7*g2^3*t^8.06)/y + (g1^5*g2^5*t^8.08)/y + t^8.09/(g1^10*g2^6*y) + (2*t^8.3)/(g1^6*g2^6*y) + t^8.32/(g1^8*g2^4*y) + (2*t^8.52)/(g1^2*g2^6*y) + (3*t^8.53)/(g1^4*g2^4*y) + t^8.55/(g1^6*g2^2*y) - (g1^9*g2^9*t^8.55)/y + (g1^7*g2^11*t^8.57)/y + (2*t^8.75)/(g2^4*y) + t^8.77/(g1^2*g2^2*y) + (g1^4*t^8.96)/(g2^4*y) + (2*g1^2*t^8.98)/(g2^2*y) - (t^4.38*y)/(g1*g2) - g1^4*g2^4*t^6.47*y - (t^6.92*y)/(g1^5*g2^5) - (t^6.94*y)/(g1^7*g2^3) - (t^7.15*y)/(g1^3*g2^3) - (g1*t^7.36*y)/g2^3 + (g2*t^7.4*y)/g1^3 + 2*g1*g2*t^7.62*y + (g2^3*t^7.64*y)/g1 + g1^5*g2*t^7.83*y + 2*g1^3*g2^3*t^7.85*y + 2*g1^7*g2^3*t^8.06*y + g1^5*g2^5*t^8.08*y + (t^8.09*y)/(g1^10*g2^6) + (2*t^8.3*y)/(g1^6*g2^6) + (t^8.32*y)/(g1^8*g2^4) + (2*t^8.52*y)/(g1^2*g2^6) + (3*t^8.53*y)/(g1^4*g2^4) + (t^8.55*y)/(g1^6*g2^2) - g1^9*g2^9*t^8.55*y + g1^7*g2^11*t^8.57*y + (2*t^8.75*y)/g2^4 + (t^8.77*y)/(g1^2*g2^2) + (g1^4*t^8.96*y)/g2^4 + (2*g1^2*t^8.98*y)/g2^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
948 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_1^2$ + $ M_5M_6$ 0.7195 0.8834 0.8145 [X:[], M:[1.0, 0.8368, 0.844, 0.9927, 1.0073, 0.9927], q:[0.5816, 0.4184], qb:[0.5744, 0.5889], phi:[0.4592]] t^2.51 + t^2.53 + t^2.76 + 2*t^2.98 + t^3. + t^3.51 + t^3.89 + t^4.36 + t^4.38 + t^4.4 + t^4.82 + t^4.85 + 2*t^4.87 + t^4.89 + t^4.91 + t^5.02 + t^5.04 + t^5.06 + t^5.27 + t^5.29 + t^5.49 + 3*t^5.51 + 2*t^5.73 + t^5.76 + 2*t^5.96 - 3*t^6. - t^4.38/y - t^4.38*y detail