Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55694 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_5q_2\tilde{q}_1$ + $ M_2^2$ + $ M_6\phi_1q_1^2$ + $ M_1M_7$ | 0.7401 | 0.9227 | 0.802 | [X:[], M:[1.0065, 1.0, 0.9935, 0.845, 0.8515, 0.6938, 0.9935], q:[0.4225, 0.571], qb:[0.5775, 0.584], phi:[0.4612]] | [X:[], M:[[-2, 1], [0, 0], [2, -1], [-4, 0], [-6, 1], [5, 0], [2, -1]], q:[[-2, 0], [4, -1]], qb:[[2, 0], [0, 1]], phi:[[-1, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_6$, $ M_4$, $ M_5$, $ \phi_1^2$, $ M_3$, $ M_7$, $ M_2$, $ \tilde{q}_1\tilde{q}_2$, $ M_6^2$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_4M_6$, $ M_5M_6$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ M_6\phi_1^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_3M_6$, $ M_6M_7$, $ M_4^2$, $ M_2M_6$, $ M_4M_5$, $ M_5^2$, $ M_4\phi_1^2$, $ M_5\phi_1^2$, $ M_3M_4$, $ M_4M_7$, $ M_2M_4$, $ M_3M_5$, $ M_5M_7$, $ \phi_1^4$, $ M_6\tilde{q}_1\tilde{q}_2$, $ M_3\phi_1^2$, $ M_7\phi_1^2$, $ M_2\phi_1^2$, $ M_3^2$, $ M_3M_7$, $ M_7^2$ | . | -3 | t^2.08 + t^2.53 + t^2.55 + t^2.77 + 2*t^2.98 + t^3. + t^3.48 + t^4.16 + t^4.36 + t^4.38 + t^4.4 + t^4.62 + t^4.64 + t^4.81 + t^4.83 + 3*t^4.85 + t^4.87 + t^4.89 + 2*t^5.06 + t^5.07 + t^5.08 + t^5.09 + t^5.11 + t^5.3 + t^5.32 + t^5.52 + 3*t^5.53 + t^5.57 + 2*t^5.75 + t^5.77 + 2*t^5.96 - 3*t^6. - t^6.02 + t^6.24 + t^6.25 + t^6.47 + t^6.48 + t^6.7 + t^6.72 + t^6.89 + t^6.91 + t^6.92 + 3*t^6.93 + t^6.94 + t^6.95 + t^6.96 + 2*t^6.97 + t^7.13 + 2*t^7.14 + t^7.15 + t^7.16 + 2*t^7.17 + t^7.19 + 2*t^7.34 + 2*t^7.36 + 3*t^7.38 + 2*t^7.4 + t^7.42 + t^7.44 + t^7.58 + 2*t^7.6 + 5*t^7.62 + t^7.64 + t^7.65 + 2*t^7.66 + 2*t^7.79 + 2*t^7.81 + 4*t^7.83 + t^7.84 + 2*t^7.85 + t^7.86 + t^7.87 + t^7.88 + t^7.89 + t^8.04 + t^8.05 - t^8.06 + 2*t^8.07 - 5*t^8.08 + 2*t^8.09 - 2*t^8.1 - t^8.12 + t^8.28 + 3*t^8.3 + 3*t^8.33 + t^8.35 + t^8.37 + t^8.5 + 2*t^8.52 - 3*t^8.53 - 3*t^8.55 + 2*t^8.73 - 3*t^8.77 + t^8.78 - t^8.79 + t^8.8 + 2*t^8.94 - t^8.96 + t^8.97 - 7*t^8.98 + t^8.99 - t^4.38/y - t^6.47/y - t^6.92/y - t^6.94/y - t^7.15/y - t^7.36/y + t^7.4/y + (2*t^7.62)/y + t^7.64/y + t^7.83/y + (2*t^7.85)/y + (2*t^8.06)/y + t^8.08/y + t^8.09/y + (2*t^8.3)/y + t^8.32/y + (2*t^8.52)/y + (3*t^8.53)/y + t^8.57/y + (2*t^8.75)/y + t^8.77/y + t^8.96/y + (2*t^8.98)/y - t^4.38*y - t^6.47*y - t^6.92*y - t^6.94*y - t^7.15*y - t^7.36*y + t^7.4*y + 2*t^7.62*y + t^7.64*y + t^7.83*y + 2*t^7.85*y + 2*t^8.06*y + t^8.08*y + t^8.09*y + 2*t^8.3*y + t^8.32*y + 2*t^8.52*y + 3*t^8.53*y + t^8.57*y + 2*t^8.75*y + t^8.77*y + t^8.96*y + 2*t^8.98*y | g1^5*t^2.08 + t^2.53/g1^4 + (g2*t^2.55)/g1^6 + t^2.77/g1^2 + (2*g1^2*t^2.98)/g2 + t^3. + g1^2*g2*t^3.48 + g1^10*t^4.16 + (g1*t^4.36)/g2 + t^4.38/g1 + (g2*t^4.4)/g1^3 + g1*t^4.62 + (g2*t^4.64)/g1 + (g1^7*t^4.81)/g2^2 + (g1^5*t^4.83)/g2 + 3*g1^3*t^4.85 + g1*g2*t^4.87 + (g2^2*t^4.89)/g1 + (2*g1^7*t^5.06)/g2 + t^5.07/g1^8 + g1^5*t^5.08 + (g2*t^5.09)/g1^10 + (g2^2*t^5.11)/g1^12 + t^5.3/g1^6 + (g2*t^5.32)/g1^8 + t^5.52/(g1^2*g2) + (3*t^5.53)/g1^4 + g1^7*g2*t^5.57 + (2*t^5.75)/g2 + t^5.77/g1^2 + (2*g1^4*t^5.96)/g2^2 - 3*t^6. - (g2*t^6.02)/g1^2 + g1^15*t^6.24 + g2*t^6.25 + g1^4*t^6.47 + g1^2*g2*t^6.48 + g1^6*t^6.7 + g1^4*g2*t^6.72 + (g1^12*t^6.89)/g2^2 + (g1^10*t^6.91)/g2 + t^6.92/g1^5 + 3*g1^8*t^6.93 + (g2*t^6.94)/g1^7 + g1^6*g2*t^6.95 + (g2^2*t^6.96)/g1^9 + 2*g1^4*g2^2*t^6.97 + t^7.13/(g1*g2) + (2*g1^12*t^7.14)/g2 + t^7.15/g1^3 + g1^10*t^7.16 + (2*g2*t^7.17)/g1^5 + (g2^2*t^7.19)/g1^7 + (2*g1^3*t^7.34)/g2^2 + (2*g1*t^7.36)/g2 + (3*t^7.38)/g1 + (2*g2*t^7.4)/g1^3 + (g2^2*t^7.42)/g1^5 + (g2^3*t^7.44)/g1^7 + (g1^5*t^7.58)/g2^2 + t^7.6/g1^12 + (g1^3*t^7.6)/g2 + 4*g1*t^7.62 + (g2*t^7.62)/g1^14 + (g2^2*t^7.64)/g1^16 + g1^12*g2*t^7.65 + (g2^2*t^7.66)/g1^3 + (g2^3*t^7.66)/g1^18 + (2*g1^9*t^7.79)/g2^3 + (2*g1^7*t^7.81)/g2^2 + (4*g1^5*t^7.83)/g2 + t^7.84/g1^10 + 2*g1^3*t^7.85 + (g2*t^7.86)/g1^12 + g1*g2*t^7.87 + (g2^2*t^7.88)/g1^14 + (g2^2*t^7.89)/g1 + (g1^9*t^8.04)/g2^2 + t^8.05/(g1^6*g2) - (g1^7*t^8.06)/g2 + (2*t^8.07)/g1^8 - 5*g1^5*t^8.08 + (2*g2*t^8.09)/g1^10 - 2*g1^3*g2*t^8.1 - g1*g2^2*t^8.12 + t^8.28/(g1^4*g2) + (3*t^8.3)/g1^6 + g1^20*t^8.33 + 2*g1^5*g2*t^8.33 + g1^3*g2^2*t^8.35 + g1*g2^3*t^8.37 + t^8.5/g2^2 + (2*t^8.52)/(g1^2*g2) - (3*t^8.53)/g1^4 + g1^9*t^8.55 - (4*g2*t^8.55)/g1^6 + g1^7*g2*t^8.57 - (g2^2*t^8.57)/g1^8 + (2*g1^2*t^8.73)/g2^2 - (3*t^8.77)/g1^2 + g1^11*t^8.78 - (g2*t^8.79)/g1^4 + g1^9*g2*t^8.8 + (2*g1^6*t^8.94)/g2^3 - (g1^4*t^8.96)/g2^2 + (g1^17*t^8.97)/g2^2 - (7*g1^2*t^8.98)/g2 + (g1^15*t^8.99)/g2 - t^4.38/(g1*y) - (g1^4*t^6.47)/y - t^6.92/(g1^5*y) - (g2*t^6.94)/(g1^7*y) - t^7.15/(g1^3*y) - (g1*t^7.36)/(g2*y) + (g2*t^7.4)/(g1^3*y) + (2*g1*t^7.62)/y + (g2*t^7.64)/(g1*y) + (g1^5*t^7.83)/(g2*y) + (2*g1^3*t^7.85)/y + (2*g1^7*t^8.06)/(g2*y) + (g1^5*t^8.08)/y + (g2*t^8.09)/(g1^10*y) + (2*t^8.3)/(g1^6*y) + (g2*t^8.32)/(g1^8*y) + (2*t^8.52)/(g1^2*g2*y) + (3*t^8.53)/(g1^4*y) - (g1^9*t^8.55)/y + (g2*t^8.55)/(g1^6*y) + (g1^7*g2*t^8.57)/y + (2*t^8.75)/(g2*y) + t^8.77/(g1^2*y) + (g1^4*t^8.96)/(g2^2*y) + (2*g1^2*t^8.98)/(g2*y) - (t^4.38*y)/g1 - g1^4*t^6.47*y - (t^6.92*y)/g1^5 - (g2*t^6.94*y)/g1^7 - (t^7.15*y)/g1^3 - (g1*t^7.36*y)/g2 + (g2*t^7.4*y)/g1^3 + 2*g1*t^7.62*y + (g2*t^7.64*y)/g1 + (g1^5*t^7.83*y)/g2 + 2*g1^3*t^7.85*y + (2*g1^7*t^8.06*y)/g2 + g1^5*t^8.08*y + (g2*t^8.09*y)/g1^10 + (2*t^8.3*y)/g1^6 + (g2*t^8.32*y)/g1^8 + (2*t^8.52*y)/(g1^2*g2) + (3*t^8.53*y)/g1^4 - g1^9*t^8.55*y + (g2*t^8.55*y)/g1^6 + g1^7*g2*t^8.57*y + (2*t^8.75*y)/g2 + (t^8.77*y)/g1^2 + (g1^4*t^8.96*y)/g2^2 + (2*g1^2*t^8.98*y)/g2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47098 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_5q_2\tilde{q}_1$ + $ M_2^2$ + $ M_6\phi_1q_1^2$ | 0.7409 | 0.9251 | 0.8009 | [X:[], M:[0.9764, 1.0, 1.0236, 0.8474, 0.8238, 0.6908], q:[0.4237, 0.5999], qb:[0.5763, 0.5527], phi:[0.4618]] | t^2.07 + t^2.47 + t^2.54 + t^2.77 + t^2.93 + t^3. + t^3.07 + t^3.39 + t^4.14 + t^4.31 + t^4.39 + t^4.46 + t^4.54 + t^4.61 + t^4.7 + t^4.77 + 3*t^4.84 + t^4.91 + t^4.94 + t^4.99 + t^5. + t^5.01 + t^5.07 + t^5.08 + t^5.14 + t^5.24 + t^5.31 + t^5.4 + t^5.46 + t^5.47 + 2*t^5.54 + t^5.7 + t^5.77 + t^5.84 + t^5.86 - 2*t^6. - t^4.39/y - t^4.39*y | detail |