Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
948 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}^{2}$ + ${ }M_{5}M_{6}$ 0.7195 0.8834 0.8145 [M:[1.0, 0.8368, 0.844, 0.9927, 1.0073, 0.9927], q:[0.5816, 0.4184], qb:[0.5744, 0.5889], phi:[0.4592]] [M:[[0, 0], [-4, -4], [-6, -2], [2, -2], [-2, 2], [2, -2]], q:[[2, 2], [-2, -2]], qb:[[4, 0], [0, 4]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{6}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{6}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}M_{6}$, ${ }\phi_{1}^{4}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}^{2}$ ${}$ -3 t^2.51 + t^2.532 + t^2.755 + 2*t^2.978 + t^3. + t^3.511 + t^3.888 + t^4.356 + t^4.378 + t^4.399 + t^4.824 + t^4.845 + 2*t^4.867 + t^4.889 + t^4.911 + t^5.021 + t^5.042 + t^5.064 + t^5.266 + t^5.287 + t^5.489 + 3*t^5.51 + 2*t^5.733 + t^5.755 + 2*t^5.956 - 3*t^6. - t^6.022 + t^6.267 + t^6.398 + t^6.42 - t^6.468 + t^6.643 + 2*t^6.866 + 2*t^6.888 + t^6.91 + t^6.931 + t^7.023 + t^7.111 + t^7.155 + 2*t^7.334 + 2*t^7.356 + 2*t^7.378 + 2*t^7.399 + t^7.421 + t^7.443 + t^7.531 + t^7.553 + t^7.575 + t^7.579 + t^7.596 + t^7.622 + t^7.666 + 2*t^7.776 + t^7.798 + 2*t^7.802 + t^7.819 + 2*t^7.824 + 2*t^7.845 + t^7.867 + t^7.889 + t^7.911 + t^7.999 + 2*t^8.021 + 2*t^8.042 - t^8.069 - t^8.09 - 2*t^8.112 - t^8.134 - t^8.156 + 2*t^8.244 + 4*t^8.266 + t^8.287 + t^8.379 + t^8.4 + t^8.422 + t^8.467 + 2*t^8.489 - 3*t^8.51 - 4*t^8.532 - t^8.554 + 3*t^8.712 + t^8.733 - t^8.755 + t^8.799 + t^8.909 + t^8.93 + 2*t^8.935 + t^8.952 - t^8.956 - 7*t^8.978 - t^4.378/y - t^6.888/y - t^6.91/y - t^7.133/y - t^7.356/y + t^7.399/y + t^7.622/y + t^7.845/y + t^7.867/y + t^8.042/y + t^8.266/y + t^8.287/y + (2*t^8.489)/y + (3*t^8.51)/y + t^8.532/y + (2*t^8.733)/y + t^8.755/y + t^8.956/y + (2*t^8.978)/y - t^4.378*y - t^6.888*y - t^6.91*y - t^7.133*y - t^7.356*y + t^7.399*y + t^7.622*y + t^7.845*y + t^7.867*y + t^8.042*y + t^8.266*y + t^8.287*y + 2*t^8.489*y + 3*t^8.51*y + t^8.532*y + 2*t^8.733*y + t^8.755*y + t^8.956*y + 2*t^8.978*y t^2.51/(g1^4*g2^4) + t^2.532/(g1^6*g2^2) + t^2.755/(g1^2*g2^2) + (2*g1^2*t^2.978)/g2^2 + t^3. + g1^2*g2^6*t^3.511 + t^3.888/(g1^5*g2^5) + (g1*t^4.356)/g2^3 + t^4.378/(g1*g2) + (g2*t^4.399)/g1^3 + (g1^7*t^4.824)/g2 + g1^5*g2*t^4.845 + 2*g1^3*g2^3*t^4.867 + g1*g2^5*t^4.889 + (g2^7*t^4.911)/g1 + t^5.021/(g1^8*g2^8) + t^5.042/(g1^10*g2^6) + t^5.064/(g1^12*g2^4) + t^5.266/(g1^6*g2^6) + t^5.287/(g1^8*g2^4) + t^5.489/(g1^2*g2^6) + (3*t^5.51)/(g1^4*g2^4) + (2*t^5.733)/g2^4 + t^5.755/(g1^2*g2^2) + (2*g1^4*t^5.956)/g2^4 - 3*t^6. - (g2^2*t^6.022)/g1^2 + g2^4*t^6.267 + t^6.398/(g1^9*g2^9) + t^6.42/(g1^11*g2^7) - g1^6*g2^2*t^6.468 + t^6.643/(g1^7*g2^7) + (2*t^6.866)/(g1^3*g2^7) + (2*t^6.888)/(g1^5*g2^5) + t^6.91/(g1^7*g2^3) + t^6.931/(g1^9*g2) + g1^4*g2^12*t^7.023 + t^7.111/(g1*g2^5) + t^7.155/(g1^5*g2) + (2*g1^3*t^7.334)/g2^5 + (2*g1*t^7.356)/g2^3 + (2*t^7.378)/(g1*g2) + (2*g2*t^7.399)/g1^3 + (g2^3*t^7.421)/g1^5 + (g2^5*t^7.443)/g1^7 + t^7.531/(g1^12*g2^12) + t^7.553/(g1^14*g2^10) + t^7.575/(g1^16*g2^8) + (g1^5*t^7.579)/g2^3 + t^7.596/(g1^18*g2^6) + g1*g2*t^7.622 + (g2^5*t^7.666)/g1^3 + (2*t^7.776)/(g1^10*g2^10) + t^7.798/(g1^12*g2^8) + (2*g1^9*t^7.802)/g2^3 + t^7.819/(g1^14*g2^6) + (2*g1^7*t^7.824)/g2 + 2*g1^5*g2*t^7.845 + g1^3*g2^3*t^7.867 + g1*g2^5*t^7.889 + (g2^7*t^7.911)/g1 + t^7.999/(g1^6*g2^10) + (2*t^8.021)/(g1^8*g2^8) + (2*t^8.042)/(g1^10*g2^6) - g1^9*g2*t^8.069 - g1^7*g2^3*t^8.09 - 2*g1^5*g2^5*t^8.112 - g1^3*g2^7*t^8.134 - g1*g2^9*t^8.156 + (2*t^8.244)/(g1^4*g2^8) + (4*t^8.266)/(g1^6*g2^6) + t^8.287/(g1^8*g2^4) + g1^5*g2^9*t^8.379 + g1^3*g2^11*t^8.4 + g1*g2^13*t^8.422 + t^8.467/g2^8 + (2*t^8.489)/(g1^2*g2^6) - (3*t^8.51)/(g1^4*g2^4) - (4*t^8.532)/(g1^6*g2^2) - t^8.554/g1^8 + (3*g1^2*t^8.712)/g2^6 + t^8.733/g2^4 - t^8.755/(g1^2*g2^2) + (g2^2*t^8.799)/g1^6 + t^8.909/(g1^13*g2^13) + t^8.93/(g1^15*g2^11) + (2*g1^6*t^8.935)/g2^6 + t^8.952/(g1^17*g2^9) - (g1^4*t^8.956)/g2^4 - (7*g1^2*t^8.978)/g2^2 - t^4.378/(g1*g2*y) - t^6.888/(g1^5*g2^5*y) - t^6.91/(g1^7*g2^3*y) - t^7.133/(g1^3*g2^3*y) - (g1*t^7.356)/(g2^3*y) + (g2*t^7.399)/(g1^3*y) + (g1*g2*t^7.622)/y + (g1^5*g2*t^7.845)/y + (g1^3*g2^3*t^7.867)/y + t^8.042/(g1^10*g2^6*y) + t^8.266/(g1^6*g2^6*y) + t^8.287/(g1^8*g2^4*y) + (2*t^8.489)/(g1^2*g2^6*y) + (3*t^8.51)/(g1^4*g2^4*y) + t^8.532/(g1^6*g2^2*y) + (2*t^8.733)/(g2^4*y) + t^8.755/(g1^2*g2^2*y) + (g1^4*t^8.956)/(g2^4*y) + (2*g1^2*t^8.978)/(g2^2*y) - (t^4.378*y)/(g1*g2) - (t^6.888*y)/(g1^5*g2^5) - (t^6.91*y)/(g1^7*g2^3) - (t^7.133*y)/(g1^3*g2^3) - (g1*t^7.356*y)/g2^3 + (g2*t^7.399*y)/g1^3 + g1*g2*t^7.622*y + g1^5*g2*t^7.845*y + g1^3*g2^3*t^7.867*y + (t^8.042*y)/(g1^10*g2^6) + (t^8.266*y)/(g1^6*g2^6) + (t^8.287*y)/(g1^8*g2^4) + (2*t^8.489*y)/(g1^2*g2^6) + (3*t^8.51*y)/(g1^4*g2^4) + (t^8.532*y)/(g1^6*g2^2) + (2*t^8.733*y)/g2^4 + (t^8.755*y)/(g1^2*g2^2) + (g1^4*t^8.956*y)/g2^4 + (2*g1^2*t^8.978*y)/g2^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1460 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}^{2}$ + ${ }M_{5}M_{6}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ 0.7401 0.9227 0.802 [M:[1.0, 0.845, 0.8515, 0.9935, 1.0065, 0.9935, 0.6938], q:[0.5775, 0.4225], qb:[0.571, 0.584], phi:[0.4612]] t^2.081 + t^2.535 + t^2.555 + t^2.767 + 2*t^2.98 + t^3. + t^3.485 + t^4.163 + t^4.364 + t^4.384 + t^4.403 + t^4.616 + t^4.636 + t^4.81 + t^4.829 + 3*t^4.849 + t^4.868 + t^4.888 + 2*t^5.062 + t^5.07 + t^5.081 + t^5.09 + t^5.109 + t^5.302 + t^5.322 + t^5.515 + 3*t^5.535 + t^5.566 + 2*t^5.748 + t^5.767 + 2*t^5.961 - 3*t^6. - t^4.384/y - t^4.384*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
598 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}^{2}$ 0.7203 0.8855 0.8134 [M:[1.0, 0.8402, 0.8171, 1.0231, 0.9769], q:[0.5799, 0.4201], qb:[0.603, 0.5568], phi:[0.4601]] t^2.451 + t^2.521 + t^2.76 + t^2.931 + t^3. + t^3.069 + t^3.41 + t^3.901 + t^4.311 + t^4.38 + t^4.449 + t^4.721 + t^4.79 + 2*t^4.859 + t^4.903 + t^4.929 + t^4.972 + t^4.998 + t^5.041 + t^5.212 + t^5.281 + t^5.382 + t^5.451 + 2*t^5.521 + t^5.691 + t^5.76 + t^5.83 + t^5.861 - 2*t^6. - t^4.38/y - t^4.38*y detail