Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55087 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{7}\tilde{q}_{1}\tilde{q}_{2}$ 0.7264 0.927 0.7837 [M:[0.986, 0.9825, 1.1181, 0.6772, 0.7813, 0.6737, 0.7778], q:[0.5748, 0.4392], qb:[0.4427, 0.7795], phi:[0.4409]] [M:[[1, -7], [-1, -11], [0, 4], [0, 6], [1, 3], [-2, 2], [-1, -1]], q:[[0, 11], [-1, -4]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{4}$, ${ }M_{7}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{4}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{6}M_{7}$, ${ }M_{5}M_{6}$, ${ }M_{4}M_{7}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}M_{5}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{7}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{5}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{2}M_{4}$, ${ }M_{1}M_{6}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{2}M_{5}$, ${ }M_{1}M_{7}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{6}$, ${ }M_{3}M_{4}$, ${ }M_{3}M_{7}$, ${ }M_{3}M_{5}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$, ${ }M_{6}\phi_{1}q_{2}^{2}$ ${}$ -2 t^2.021 + t^2.032 + t^2.333 + t^2.344 + t^2.646 + t^2.948 + t^2.958 + t^3.354 + t^3.958 + t^4.042 + t^4.053 + 2*t^4.063 + t^4.355 + 3*t^4.365 + 2*t^4.375 + 2*t^4.667 + 2*t^4.677 + t^4.688 + t^4.772 + t^4.969 + 3*t^4.979 + 2*t^4.989 + t^5.281 + 3*t^5.291 + t^5.302 + t^5.376 + t^5.386 + t^5.688 + t^5.698 + t^5.895 + t^5.905 + t^5.916 + t^5.979 - 2*t^6. - t^6.01 + t^6.064 + t^6.074 + 2*t^6.084 + 2*t^6.095 + t^6.292 + t^6.302 + t^6.376 + 3*t^6.386 + 4*t^6.396 + 2*t^6.407 + t^6.604 - t^6.614 + 2*t^6.688 + 4*t^6.698 + 5*t^6.709 + 2*t^6.719 + t^6.793 + t^6.803 + t^6.906 - t^6.926 + t^6.99 + 4*t^7. + 5*t^7.011 + 3*t^7.021 + t^7.031 + t^7.105 + t^7.116 + t^7.302 + 5*t^7.312 + 4*t^7.323 + t^7.333 + t^7.397 + t^7.407 + 2*t^7.417 + t^7.614 + 2*t^7.625 + 2*t^7.635 + t^7.645 + t^7.709 + 2*t^7.719 + t^7.73 + 2*t^7.916 + 2*t^7.927 + 2*t^7.937 + t^7.947 + t^8.001 - t^8.021 - 4*t^8.032 - t^8.042 + t^8.085 + t^8.095 + 2*t^8.105 + 2*t^8.116 + 3*t^8.126 + t^8.229 + 2*t^8.239 + 2*t^8.249 + t^8.259 + t^8.313 + 2*t^8.323 - 3*t^8.333 - 5*t^8.344 - t^8.354 + t^8.397 + 3*t^8.407 + 4*t^8.418 + 4*t^8.428 + 2*t^8.438 + 2*t^8.625 - 2*t^8.646 - t^8.656 + 2*t^8.709 + 4*t^8.72 + 8*t^8.73 + 4*t^8.74 + 2*t^8.751 + t^8.814 + t^8.824 + 2*t^8.835 + t^8.843 + t^8.853 + t^8.863 + t^8.874 + t^8.927 + t^8.937 - 5*t^8.948 - 6*t^8.958 - t^8.968 - t^4.323/y - t^6.344/y - t^6.354/y - t^6.656/y - t^6.667/y + t^7.053/y - t^7.27/y - t^7.281/y + t^7.355/y + (3*t^7.365)/y + (2*t^7.375)/y + t^7.667/y + (2*t^7.677)/y + t^7.969/y + (4*t^7.979)/y + (3*t^7.989)/y + t^8.281/y + (3*t^8.291)/y + (2*t^8.302)/y - t^8.365/y + t^8.593/y + t^8.604/y - t^8.677/y - t^8.688/y + t^8.905/y + t^8.979/y - t^4.323*y - t^6.344*y - t^6.354*y - t^6.656*y - t^6.667*y + t^7.053*y - t^7.27*y - t^7.281*y + t^7.355*y + 3*t^7.365*y + 2*t^7.375*y + t^7.667*y + 2*t^7.677*y + t^7.969*y + 4*t^7.979*y + 3*t^7.989*y + t^8.281*y + 3*t^8.291*y + 2*t^8.302*y - t^8.365*y + t^8.593*y + t^8.604*y - t^8.677*y - t^8.688*y + t^8.905*y + t^8.979*y (g2^2*t^2.021)/g1^2 + g2^6*t^2.032 + t^2.333/(g1*g2) + g1*g2^3*t^2.344 + t^2.646/g2^4 + t^2.948/(g1*g2^11) + (g1*t^2.958)/g2^7 + g2^4*t^3.354 + t^3.958/(g1^2*g2^10) + (g2^4*t^4.042)/g1^4 + (g2^8*t^4.053)/g1^2 + 2*g2^12*t^4.063 + (g2*t^4.355)/g1^3 + (3*g2^5*t^4.365)/g1 + 2*g1*g2^9*t^4.375 + (2*t^4.667)/(g1^2*g2^2) + 2*g2^2*t^4.677 + g1^2*g2^6*t^4.688 + g2^20*t^4.772 + t^4.969/(g1^3*g2^9) + (3*t^4.979)/(g1*g2^5) + (2*g1*t^4.989)/g2 + t^5.281/(g1^2*g2^12) + (3*t^5.291)/g2^8 + (g1^2*t^5.302)/g2^4 + (g2^6*t^5.376)/g1^2 + g2^10*t^5.386 + (g2^3*t^5.688)/g1 + g1*g2^7*t^5.698 + t^5.895/(g1^2*g2^22) + t^5.905/g2^18 + (g1^2*t^5.916)/g2^14 + t^5.979/(g1^4*g2^8) - 2*t^6. - g1^2*g2^4*t^6.01 + (g2^6*t^6.064)/g1^6 + (g2^10*t^6.074)/g1^4 + (2*g2^14*t^6.084)/g1^2 + 2*g2^18*t^6.095 + t^6.292/(g1^3*g2^11) + t^6.302/(g1*g2^7) + (g2^3*t^6.376)/g1^5 + (3*g2^7*t^6.386)/g1^3 + (4*g2^11*t^6.396)/g1 + 2*g1*g2^15*t^6.407 + t^6.604/(g1^2*g2^14) - t^6.614/g2^10 + (2*t^6.688)/g1^4 + (4*g2^4*t^6.698)/g1^2 + 5*g2^8*t^6.709 + 2*g1^2*g2^12*t^6.719 + (g2^22*t^6.793)/g1^2 + g2^26*t^6.803 + t^6.906/(g1^3*g2^21) - (g1*t^6.926)/g2^13 + t^6.99/(g1^5*g2^7) + (4*t^7.)/(g1^3*g2^3) + (5*g2*t^7.011)/g1 + 3*g1*g2^5*t^7.021 + g1^3*g2^9*t^7.031 + (g2^19*t^7.105)/g1 + g1*g2^23*t^7.116 + t^7.302/(g1^4*g2^10) + (5*t^7.312)/(g1^2*g2^6) + (4*t^7.323)/g2^2 + g1^2*g2^2*t^7.333 + (g2^8*t^7.397)/g1^4 + (g2^12*t^7.407)/g1^2 + 2*g2^16*t^7.417 + t^7.614/(g1^3*g2^13) + (2*t^7.625)/(g1*g2^9) + (2*g1*t^7.635)/g2^5 + (g1^3*t^7.645)/g2 + (g2^5*t^7.709)/g1^3 + (2*g2^9*t^7.719)/g1 + g1*g2^13*t^7.73 + (2*t^7.916)/(g1^4*g2^20) + (2*t^7.927)/(g1^2*g2^16) + (2*t^7.937)/g2^12 + (g1^2*t^7.947)/g2^8 + t^8.001/(g1^6*g2^6) - (g2^2*t^8.021)/g1^2 - 4*g2^6*t^8.032 - g1^2*g2^10*t^8.042 + (g2^8*t^8.085)/g1^8 + (g2^12*t^8.095)/g1^6 + (2*g2^16*t^8.105)/g1^4 + (2*g2^20*t^8.116)/g1^2 + 3*g2^24*t^8.126 + t^8.229/(g1^3*g2^23) + (2*t^8.239)/(g1*g2^19) + (2*g1*t^8.249)/g2^15 + (g1^3*t^8.259)/g2^11 + t^8.313/(g1^5*g2^9) + (2*t^8.323)/(g1^3*g2^5) - (3*t^8.333)/(g1*g2) - 5*g1*g2^3*t^8.344 - g1^3*g2^7*t^8.354 + (g2^5*t^8.397)/g1^7 + (3*g2^9*t^8.407)/g1^5 + (4*g2^13*t^8.418)/g1^3 + (4*g2^17*t^8.428)/g1 + 2*g1*g2^21*t^8.438 + (2*t^8.625)/(g1^4*g2^12) - (2*t^8.646)/g2^4 - g1^2*t^8.656 + (2*g2^2*t^8.709)/g1^6 + (4*g2^6*t^8.72)/g1^4 + (8*g2^10*t^8.73)/g1^2 + 4*g2^14*t^8.74 + 2*g1^2*g2^18*t^8.751 + (g2^24*t^8.814)/g1^4 + (g2^28*t^8.824)/g1^2 + 2*g2^32*t^8.835 + t^8.843/(g1^3*g2^33) + t^8.853/(g1*g2^29) + (g1*t^8.863)/g2^25 + (g1^3*t^8.874)/g2^21 + t^8.927/(g1^5*g2^19) + t^8.937/(g1^3*g2^15) - (5*t^8.948)/(g1*g2^11) - (6*g1*t^8.958)/g2^7 - (g1^3*t^8.968)/g2^3 - t^4.323/(g2^2*y) - t^6.344/(g1^2*y) - (g2^4*t^6.354)/y - t^6.656/(g1*g2^3*y) - (g1*g2*t^6.667)/y + (g2^8*t^7.053)/(g1^2*y) - t^7.27/(g1*g2^13*y) - (g1*t^7.281)/(g2^9*y) + (g2*t^7.355)/(g1^3*y) + (3*g2^5*t^7.365)/(g1*y) + (2*g1*g2^9*t^7.375)/y + t^7.667/(g1^2*g2^2*y) + (2*g2^2*t^7.677)/y + t^7.969/(g1^3*g2^9*y) + (4*t^7.979)/(g1*g2^5*y) + (3*g1*t^7.989)/(g2*y) + t^8.281/(g1^2*g2^12*y) + (3*t^8.291)/(g2^8*y) + (2*g1^2*t^8.302)/(g2^4*y) - (g2^2*t^8.365)/(g1^4*y) + t^8.593/(g1*g2^15*y) + (g1*t^8.604)/(g2^11*y) - t^8.677/(g1^3*g2*y) - (g2^3*t^8.688)/(g1*y) + t^8.905/(g2^18*y) + t^8.979/(g1^4*g2^8*y) - (t^4.323*y)/g2^2 - (t^6.344*y)/g1^2 - g2^4*t^6.354*y - (t^6.656*y)/(g1*g2^3) - g1*g2*t^6.667*y + (g2^8*t^7.053*y)/g1^2 - (t^7.27*y)/(g1*g2^13) - (g1*t^7.281*y)/g2^9 + (g2*t^7.355*y)/g1^3 + (3*g2^5*t^7.365*y)/g1 + 2*g1*g2^9*t^7.375*y + (t^7.667*y)/(g1^2*g2^2) + 2*g2^2*t^7.677*y + (t^7.969*y)/(g1^3*g2^9) + (4*t^7.979*y)/(g1*g2^5) + (3*g1*t^7.989*y)/g2 + (t^8.281*y)/(g1^2*g2^12) + (3*t^8.291*y)/g2^8 + (2*g1^2*t^8.302*y)/g2^4 - (g2^2*t^8.365*y)/g1^4 + (t^8.593*y)/(g1*g2^15) + (g1*t^8.604*y)/g2^11 - (t^8.677*y)/(g1^3*g2) - (g2^3*t^8.688*y)/g1 + (t^8.905*y)/g2^18 + (t^8.979*y)/(g1^4*g2^8)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
56711 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{7}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{8}\phi_{1}q_{2}^{2}$ 0.7472 0.9679 0.772 [M:[0.9858, 0.9858, 1.1174, 0.6761, 0.7794, 0.6761, 0.7794, 0.6761], q:[0.5729, 0.4413], qb:[0.4413, 0.7794], phi:[0.4413]] 3*t^2.028 + 2*t^2.338 + t^2.648 + 2*t^2.957 + t^3.352 + 7*t^4.057 + 8*t^4.366 + 6*t^4.676 + t^4.761 + 8*t^4.986 + 5*t^5.296 + 3*t^5.381 + 2*t^5.69 + 3*t^5.915 - 4*t^6. - t^4.324/y - t^4.324*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46946 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$ 0.7089 0.895 0.7921 [M:[0.9777, 0.9907, 1.1181, 0.6772, 0.7731, 0.6902], q:[0.5749, 0.4474], qb:[0.4345, 0.7795], phi:[0.4409]] t^2.032 + t^2.071 + t^2.319 + t^2.646 + t^2.933 + t^2.972 + t^3.354 + t^3.642 + t^4.007 + 2*t^4.063 + t^4.102 + t^4.141 + 2*t^4.351 + 2*t^4.39 + t^4.638 + t^4.677 + t^4.716 + t^4.772 + 2*t^4.965 + 2*t^5.004 + t^5.042 + t^5.252 + 2*t^5.291 + t^5.386 + t^5.425 + 2*t^5.674 + t^5.712 + t^5.866 + t^5.905 + t^5.944 - 2*t^6. - t^4.323/y - t^4.323*y detail