Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
884 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_2M_3$ + $ \phi_1^4$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_5\phi_1\tilde{q}_2^2$ + $ M_6\phi_1\tilde{q}_1\tilde{q}_2$ 0.7062 0.9336 0.7565 [X:[], M:[0.8189, 1.1811, 0.8189, 0.6811, 0.6811, 0.6811], q:[0.75, 0.4311], qb:[0.4095, 0.4095], phi:[0.5]] [X:[], M:[[1, 1], [-1, -1], [1, 1], [-2, 0], [0, -2], [-1, -1]], q:[[0, 0], [-1, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_4$, $ M_5$, $ M_6$, $ M_1$, $ M_3$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ M_4^2$, $ M_5^2$, $ M_5M_6$, $ M_4M_5$, $ M_6^2$, $ \phi_1q_2^2$, $ M_4M_6$, $ M_1M_4$, $ M_3M_4$, $ M_1M_5$, $ M_3M_5$, $ M_1M_6$, $ M_3M_6$, $ M_1M_5$, $ M_3M_5$, $ M_1M_4$, $ M_3M_4$, $ M_4q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ M_1^2$, $ M_1M_3$, $ M_3^2$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_4\phi_1^2$, $ q_2^2\tilde{q}_2^2$, $ M_5\phi_1^2$, $ q_2^2\tilde{q}_1^2$, $ M_6\phi_1^2$, $ \phi_1q_1q_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_1\phi_1^2$, $ M_3\phi_1^2$, $ M_4q_1\tilde{q}_1$, $ M_6q_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_5q_1\tilde{q}_1$, $ M_6q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_5q_1\tilde{q}_2$, $ M_4q_1\tilde{q}_2$, $ M_3q_1\tilde{q}_1$, $ M_3q_1\tilde{q}_2$ $q_1q_2\tilde{q}_1^2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$ -1 3*t^2.04 + 2*t^2.46 + 2*t^2.52 + t^3. + 2*t^3.48 + 2*t^4.02 + 7*t^4.09 + 6*t^4.5 + 6*t^4.56 + 3*t^4.91 + 4*t^4.98 + 6*t^5.04 + 2*t^5.46 + 8*t^5.52 + 2*t^5.94 - t^6. + 4*t^6.06 + 13*t^6.13 + 2*t^6.48 + 16*t^6.54 + 14*t^6.61 + 8*t^6.96 + 10*t^7.02 + 15*t^7.09 + 4*t^7.37 + 2*t^7.44 + 8*t^7.5 + 20*t^7.56 + 2*t^7.91 + 6*t^7.98 - t^8.04 + 8*t^8.11 + 22*t^8.17 + 2*t^8.39 - 6*t^8.46 - 2*t^8.52 + 28*t^8.59 + 26*t^8.65 - t^4.5/y - (3*t^6.54)/y - t^6.96/y + (3*t^7.09)/y + (6*t^7.5)/y + (6*t^7.56)/y + t^7.91/y + (4*t^7.98)/y + (5*t^8.04)/y + (5*t^8.46)/y + (8*t^8.52)/y - (6*t^8.59)/y + (4*t^8.94)/y - t^4.5*y - 3*t^6.54*y - t^6.96*y + 3*t^7.09*y + 6*t^7.5*y + 6*t^7.56*y + t^7.91*y + 4*t^7.98*y + 5*t^8.04*y + 5*t^8.46*y + 8*t^8.52*y - 6*t^8.59*y + 4*t^8.94*y t^2.04/g1^2 + t^2.04/g2^2 + t^2.04/(g1*g2) + 2*g1*g2*t^2.46 + t^2.52/g1 + t^2.52/g2 + t^3. + g1*t^3.48 + g2*t^3.48 + t^4.02/g1 + t^4.02/g2 + t^4.09/g1^4 + t^4.09/g2^4 + t^4.09/(g1*g2^3) + (3*t^4.09)/(g1^2*g2^2) + t^4.09/(g1^3*g2) + 2*t^4.5 + (2*g1*t^4.5)/g2 + (2*g2*t^4.5)/g1 + t^4.56/g1^3 + t^4.56/g2^3 + (2*t^4.56)/(g1*g2^2) + (2*t^4.56)/(g1^2*g2) + 3*g1^2*g2^2*t^4.91 + 2*g1*t^4.98 + 2*g2*t^4.98 + (2*t^5.04)/g1^2 + (2*t^5.04)/g2^2 + (2*t^5.04)/(g1*g2) + 2*g1*g2*t^5.46 + (3*t^5.52)/g1 + (g1*t^5.52)/g2^2 + (3*t^5.52)/g2 + (g2*t^5.52)/g1^2 + g1^2*g2*t^5.94 + g1*g2^2*t^5.94 - t^6. + t^6.06/g1^3 + t^6.06/g2^3 + t^6.06/(g1*g2^2) + t^6.06/(g1^2*g2) + t^6.13/g1^6 + t^6.13/g2^6 + t^6.13/(g1*g2^5) + (3*t^6.13)/(g1^2*g2^4) + (3*t^6.13)/(g1^3*g2^3) + (3*t^6.13)/(g1^4*g2^2) + t^6.13/(g1^5*g2) + g1*t^6.48 + g2*t^6.48 + (3*t^6.54)/g1^2 + (2*g1*t^6.54)/g2^3 + (3*t^6.54)/g2^2 + (6*t^6.54)/(g1*g2) + (2*g2*t^6.54)/g1^3 + t^6.61/g1^5 + t^6.61/g2^5 + (2*t^6.61)/(g1*g2^4) + (4*t^6.61)/(g1^2*g2^3) + (4*t^6.61)/(g1^3*g2^2) + (2*t^6.61)/(g1^4*g2) + 3*g1^2*t^6.96 + 2*g1*g2*t^6.96 + 3*g2^2*t^6.96 + (3*t^7.02)/g1 + (2*g1*t^7.02)/g2^2 + (3*t^7.02)/g2 + (2*g2*t^7.02)/g1^2 + (2*t^7.09)/g1^4 + (2*t^7.09)/g2^4 + (3*t^7.09)/(g1*g2^3) + (5*t^7.09)/(g1^2*g2^2) + (3*t^7.09)/(g1^3*g2) + 4*g1^3*g2^3*t^7.37 + g1^2*g2*t^7.44 + g1*g2^2*t^7.44 + 2*t^7.5 + (3*g1*t^7.5)/g2 + (3*g2*t^7.5)/g1 + (4*t^7.56)/g1^3 + (g1*t^7.56)/g2^4 + (4*t^7.56)/g2^3 + (5*t^7.56)/(g1*g2^2) + (5*t^7.56)/(g1^2*g2) + (g2*t^7.56)/g1^4 + 2*g1^2*g2^2*t^7.91 + 2*g1*t^7.98 + (g1^2*t^7.98)/g2 + 2*g2*t^7.98 + (g2^2*t^7.98)/g1 - t^8.04/(g1*g2) + t^8.11/g1^5 + t^8.11/g2^5 + t^8.11/(g1*g2^4) + (2*t^8.11)/(g1^2*g2^3) + (2*t^8.11)/(g1^3*g2^2) + t^8.11/(g1^4*g2) + t^8.17/g1^8 + t^8.17/g2^8 + t^8.17/(g1*g2^7) + (3*t^8.17)/(g1^2*g2^6) + (3*t^8.17)/(g1^3*g2^5) + (6*t^8.17)/(g1^4*g2^4) + (3*t^8.17)/(g1^5*g2^3) + (3*t^8.17)/(g1^6*g2^2) + t^8.17/(g1^7*g2) + g1^3*g2^2*t^8.39 + g1^2*g2^3*t^8.39 - g1^2*t^8.46 - 4*g1*g2*t^8.46 - g2^2*t^8.46 - (2*t^8.52)/g1 + (g1*t^8.52)/g2^2 - (2*t^8.52)/g2 + (g2*t^8.52)/g1^2 + (3*t^8.59)/g1^4 + (2*g1*t^8.59)/g2^5 + (3*t^8.59)/g2^4 + (6*t^8.59)/(g1*g2^3) + (6*t^8.59)/(g1^2*g2^2) + (6*t^8.59)/(g1^3*g2) + (2*g2*t^8.59)/g1^5 + t^8.65/g1^7 + t^8.65/g2^7 + (2*t^8.65)/(g1*g2^6) + (4*t^8.65)/(g1^2*g2^5) + (6*t^8.65)/(g1^3*g2^4) + (6*t^8.65)/(g1^4*g2^3) + (4*t^8.65)/(g1^5*g2^2) + (2*t^8.65)/(g1^6*g2) - t^4.5/y - t^6.54/(g1^2*y) - t^6.54/(g2^2*y) - t^6.54/(g1*g2*y) - (g1*g2*t^6.96)/y + t^7.09/(g1*g2^3*y) + t^7.09/(g1^2*g2^2*y) + t^7.09/(g1^3*g2*y) + (2*t^7.5)/y + (2*g1*t^7.5)/(g2*y) + (2*g2*t^7.5)/(g1*y) + t^7.56/(g1^3*y) + t^7.56/(g2^3*y) + (2*t^7.56)/(g1*g2^2*y) + (2*t^7.56)/(g1^2*g2*y) + (g1^2*g2^2*t^7.91)/y + (2*g1*t^7.98)/y + (2*g2*t^7.98)/y + t^8.04/(g1^2*y) + t^8.04/(g2^2*y) + (3*t^8.04)/(g1*g2*y) + (g1^2*t^8.46)/y + (3*g1*g2*t^8.46)/y + (g2^2*t^8.46)/y + (3*t^8.52)/(g1*y) + (g1*t^8.52)/(g2^2*y) + (3*t^8.52)/(g2*y) + (g2*t^8.52)/(g1^2*y) - t^8.59/(g1^4*y) - t^8.59/(g2^4*y) - t^8.59/(g1*g2^3*y) - (2*t^8.59)/(g1^2*g2^2*y) - t^8.59/(g1^3*g2*y) + (2*g1^2*g2*t^8.94)/y + (2*g1*g2^2*t^8.94)/y - t^4.5*y - (t^6.54*y)/g1^2 - (t^6.54*y)/g2^2 - (t^6.54*y)/(g1*g2) - g1*g2*t^6.96*y + (t^7.09*y)/(g1*g2^3) + (t^7.09*y)/(g1^2*g2^2) + (t^7.09*y)/(g1^3*g2) + 2*t^7.5*y + (2*g1*t^7.5*y)/g2 + (2*g2*t^7.5*y)/g1 + (t^7.56*y)/g1^3 + (t^7.56*y)/g2^3 + (2*t^7.56*y)/(g1*g2^2) + (2*t^7.56*y)/(g1^2*g2) + g1^2*g2^2*t^7.91*y + 2*g1*t^7.98*y + 2*g2*t^7.98*y + (t^8.04*y)/g1^2 + (t^8.04*y)/g2^2 + (3*t^8.04*y)/(g1*g2) + g1^2*t^8.46*y + 3*g1*g2*t^8.46*y + g2^2*t^8.46*y + (3*t^8.52*y)/g1 + (g1*t^8.52*y)/g2^2 + (3*t^8.52*y)/g2 + (g2*t^8.52*y)/g1^2 - (t^8.59*y)/g1^4 - (t^8.59*y)/g2^4 - (t^8.59*y)/(g1*g2^3) - (2*t^8.59*y)/(g1^2*g2^2) - (t^8.59*y)/(g1^3*g2) + 2*g1^2*g2*t^8.94*y + 2*g1*g2^2*t^8.94*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
568 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_2M_3$ + $ \phi_1^4$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_5\phi_1\tilde{q}_2^2$ 0.6855 0.8928 0.7678 [X:[], M:[0.8171, 1.1829, 0.8171, 0.6829, 0.6829], q:[0.75, 0.4329], qb:[0.4085, 0.4085], phi:[0.5]] 2*t^2.05 + 2*t^2.45 + 2*t^2.52 + t^3. + 2*t^3.48 + t^3.95 + 2*t^4.02 + 4*t^4.1 + 4*t^4.5 + 4*t^4.57 + 3*t^4.9 + 4*t^4.98 + 5*t^5.05 + 2*t^5.45 + 6*t^5.52 + 2*t^5.93 + t^6. - t^4.5/y - t^4.5*y detail