Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1370 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_2M_3$ + $ \phi_1^4$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_4\phi_1\tilde{q}_2^2$ + $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_2^2$ 0.7062 0.9336 0.7565 [X:[], M:[0.8189, 1.1811, 0.8189, 0.6811, 0.6811, 0.6811], q:[0.75, 0.4311], qb:[0.4095, 0.4095], phi:[0.5]] [X:[], M:[[2], [-2], [2], [-2], [-2], [-2]], q:[[0], [-2]], qb:[[1], [1]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_4$, $ M_5$, $ M_6$, $ M_1$, $ M_3$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ M_4^2$, $ M_4M_5$, $ M_5^2$, $ M_4M_6$, $ M_5M_6$, $ M_6^2$, $ \phi_1q_2^2$, $ M_1M_4$, $ M_3M_4$, $ M_1M_5$, $ M_3M_5$, $ M_1M_6$, $ M_3M_6$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_2$, $ M_1^2$, $ M_1M_3$, $ M_3^2$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_4\phi_1^2$, $ M_5\phi_1^2$, $ M_6\phi_1^2$, $ \phi_1q_1q_2$, $ q_2^2\tilde{q}_1^2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_1\phi_1^2$, $ M_3\phi_1^2$, $ M_4q_1\tilde{q}_1$, $ M_5q_1\tilde{q}_1$, $ M_6q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_4q_1\tilde{q}_2$, $ M_5q_1\tilde{q}_2$, $ M_6q_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_3q_1\tilde{q}_1$, $ M_3q_1\tilde{q}_2$ $q_1q_2\tilde{q}_1^2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$ -1 3*t^2.04 + 2*t^2.46 + 2*t^2.52 + t^3. + 2*t^3.48 + 2*t^4.02 + 7*t^4.09 + 6*t^4.5 + 6*t^4.56 + 3*t^4.91 + 4*t^4.98 + 6*t^5.04 + 2*t^5.46 + 8*t^5.52 + 2*t^5.94 - t^6. + 4*t^6.06 + 13*t^6.13 + 2*t^6.48 + 16*t^6.54 + 14*t^6.61 + 8*t^6.96 + 10*t^7.02 + 15*t^7.09 + 4*t^7.37 + 2*t^7.44 + 8*t^7.5 + 20*t^7.56 + 2*t^7.91 + 6*t^7.98 - t^8.04 + 8*t^8.11 + 22*t^8.17 + 2*t^8.39 - 6*t^8.46 - 2*t^8.52 + 28*t^8.59 + 26*t^8.65 - t^4.5/y - (3*t^6.54)/y - t^6.96/y + (3*t^7.09)/y + (6*t^7.5)/y + (6*t^7.56)/y + t^7.91/y + (4*t^7.98)/y + (5*t^8.04)/y + (5*t^8.46)/y + (8*t^8.52)/y - (6*t^8.59)/y + (4*t^8.94)/y - t^4.5*y - 3*t^6.54*y - t^6.96*y + 3*t^7.09*y + 6*t^7.5*y + 6*t^7.56*y + t^7.91*y + 4*t^7.98*y + 5*t^8.04*y + 5*t^8.46*y + 8*t^8.52*y - 6*t^8.59*y + 4*t^8.94*y (3*t^2.04)/g1^2 + 2*g1^2*t^2.46 + (2*t^2.52)/g1 + t^3. + 2*g1*t^3.48 + (2*t^4.02)/g1 + (7*t^4.09)/g1^4 + 6*t^4.5 + (6*t^4.56)/g1^3 + 3*g1^4*t^4.91 + 4*g1*t^4.98 + (6*t^5.04)/g1^2 + 2*g1^2*t^5.46 + (8*t^5.52)/g1 + 2*g1^3*t^5.94 - t^6. + (4*t^6.06)/g1^3 + (13*t^6.13)/g1^6 + 2*g1*t^6.48 + (16*t^6.54)/g1^2 + (14*t^6.61)/g1^5 + 8*g1^2*t^6.96 + (10*t^7.02)/g1 + (15*t^7.09)/g1^4 + 4*g1^6*t^7.37 + 2*g1^3*t^7.44 + 8*t^7.5 + (20*t^7.56)/g1^3 + 2*g1^4*t^7.91 + 6*g1*t^7.98 - t^8.04/g1^2 + (8*t^8.11)/g1^5 + (22*t^8.17)/g1^8 + 2*g1^5*t^8.39 - 6*g1^2*t^8.46 - (2*t^8.52)/g1 + (28*t^8.59)/g1^4 + (26*t^8.65)/g1^7 - t^4.5/y - (3*t^6.54)/(g1^2*y) - (g1^2*t^6.96)/y + (3*t^7.09)/(g1^4*y) + (6*t^7.5)/y + (6*t^7.56)/(g1^3*y) + (g1^4*t^7.91)/y + (4*g1*t^7.98)/y + (5*t^8.04)/(g1^2*y) + (5*g1^2*t^8.46)/y + (8*t^8.52)/(g1*y) - (6*t^8.59)/(g1^4*y) + (4*g1^3*t^8.94)/y - t^4.5*y - (3*t^6.54*y)/g1^2 - g1^2*t^6.96*y + (3*t^7.09*y)/g1^4 + 6*t^7.5*y + (6*t^7.56*y)/g1^3 + g1^4*t^7.91*y + 4*g1*t^7.98*y + (5*t^8.04*y)/g1^2 + 5*g1^2*t^8.46*y + (8*t^8.52*y)/g1 - (6*t^8.59*y)/g1^4 + 4*g1^3*t^8.94*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2432 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_2M_3$ + $ \phi_1^4$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_4\phi_1\tilde{q}_2^2$ + $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_2^2$ + $ M_7q_1\tilde{q}_1$ 0.7202 0.9587 0.7512 [X:[], M:[0.8263, 1.1737, 0.8263, 0.6737, 0.6737, 0.6737, 0.8369], q:[0.75, 0.4237], qb:[0.4131, 0.4131], phi:[0.5]] 3*t^2.02 + 2*t^2.48 + 3*t^2.51 + t^3. + t^3.49 + 2*t^4.01 + 7*t^4.04 + 6*t^4.5 + 9*t^4.53 + 3*t^4.96 + 6*t^4.99 + 9*t^5.02 + 2*t^5.48 + 6*t^5.51 - 2*t^6. - t^4.5/y - t^4.5*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
880 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_2M_3$ + $ \phi_1^4$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_4\phi_1\tilde{q}_2^2$ + $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ 0.6855 0.8928 0.7678 [X:[], M:[0.8171, 1.1829, 0.8171, 0.6829, 0.6829], q:[0.75, 0.4329], qb:[0.4085, 0.4085], phi:[0.5]] 2*t^2.05 + 2*t^2.45 + 2*t^2.52 + t^3. + 2*t^3.48 + t^3.95 + 2*t^4.02 + 4*t^4.1 + 4*t^4.5 + 4*t^4.57 + 3*t^4.9 + 4*t^4.98 + 5*t^5.05 + 2*t^5.45 + 6*t^5.52 + 2*t^5.93 + t^6. - t^4.5/y - t^4.5*y detail