Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
877 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1q_2\tilde{q}_1$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ 0.6282 0.8399 0.7479 [X:[], M:[0.9249, 1.2252, 0.7748, 0.6877, 0.6877], q:[0.7312, 0.3438], qb:[0.3438, 0.4309], phi:[0.5375]] [X:[], M:[[4], [-12], [12], [-10], [-10]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_4$, $ M_5$, $ q_2\tilde{q}_1$, $ M_3$, $ q_2\tilde{q}_2$, $ M_1$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ q_1\tilde{q}_2$, $ M_2$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$, $ M_4^2$, $ M_4M_5$, $ M_5^2$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_3M_4$, $ M_3M_5$, $ M_3q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ M_3q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_1M_4$, $ M_1M_5$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_1M_3$, $ \phi_1q_1\tilde{q}_2$, $ M_4\phi_1^2$, $ M_5\phi_1^2$, $ M_4q_1\tilde{q}_1$, $ M_5q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ M_1^2$, $ M_3\phi_1^2$, $ M_3q_1\tilde{q}_1$, $ M_4q_1\tilde{q}_2$, $ M_5q_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ M_2M_4$, $ M_2M_5$, $ M_4\phi_1q_2^2$, $ M_5\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_1$, $ M_4\phi_1\tilde{q}_1^2$, $ M_5\phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1^3$, $ M_3q_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$ $M_3\phi_1q_2^2$, $ M_3\phi_1\tilde{q}_1^2$, $ \phi_1q_2^3\tilde{q}_2$ 1 3*t^2.06 + 2*t^2.32 + t^2.77 + 2*t^3.23 + t^3.49 + 3*t^3.68 + 6*t^4.13 + t^4.2 + 6*t^4.39 + 3*t^4.65 + 3*t^4.84 + 2*t^5.1 + 6*t^5.29 + 7*t^5.55 + 7*t^5.74 + 2*t^5.81 + t^6. + 10*t^6.19 + t^6.26 + 13*t^6.45 + 2*t^6.52 + 8*t^6.71 + 9*t^6.9 + 5*t^6.97 + 3*t^7.16 + 15*t^7.35 + 3*t^7.42 + 10*t^7.61 + t^7.68 + 12*t^7.8 + 9*t^7.87 - t^8.06 + 3*t^8.14 + 15*t^8.25 - t^8.32 + t^8.4 + 21*t^8.51 + 2*t^8.59 + 12*t^8.77 + 3*t^8.85 + 16*t^8.96 - t^4.61/y - (2*t^6.68)/y + (3*t^7.13)/y + (6*t^7.39)/y + t^7.65/y + (3*t^7.84)/y + (2*t^8.1)/y + (6*t^8.29)/y + (9*t^8.55)/y + (6*t^8.74)/y + (2*t^8.81)/y - t^4.61*y - 2*t^6.68*y + 3*t^7.13*y + 6*t^7.39*y + t^7.65*y + 3*t^7.84*y + 2*t^8.1*y + 6*t^8.29*y + 9*t^8.55*y + 6*t^8.74*y + 2*t^8.81*y (3*t^2.06)/g1^10 + 2*g1^12*t^2.32 + g1^4*t^2.77 + (2*t^3.23)/g1^4 + g1^18*t^3.49 + (3*t^3.68)/g1^12 + (6*t^4.13)/g1^20 + g1^32*t^4.2 + 6*g1^2*t^4.39 + 3*g1^24*t^4.65 + (3*t^4.84)/g1^6 + 2*g1^16*t^5.1 + (6*t^5.29)/g1^14 + 7*g1^8*t^5.55 + (7*t^5.74)/g1^22 + 2*g1^30*t^5.81 + t^6. + (10*t^6.19)/g1^30 + g1^22*t^6.26 + (13*t^6.45)/g1^8 + 2*g1^44*t^6.52 + 8*g1^14*t^6.71 + (9*t^6.9)/g1^16 + 5*g1^36*t^6.97 + 3*g1^6*t^7.16 + (15*t^7.35)/g1^24 + 3*g1^28*t^7.42 + (10*t^7.61)/g1^2 + g1^50*t^7.68 + (12*t^7.8)/g1^32 + 9*g1^20*t^7.87 - t^8.06/g1^10 + 3*g1^42*t^8.14 + (15*t^8.25)/g1^40 - g1^12*t^8.32 + g1^64*t^8.4 + (21*t^8.51)/g1^18 + 2*g1^34*t^8.59 + 12*g1^4*t^8.77 + 3*g1^56*t^8.85 + (16*t^8.96)/g1^26 - t^4.61/(g1^2*y) - (2*t^6.68)/(g1^12*y) + (3*t^7.13)/(g1^20*y) + (6*g1^2*t^7.39)/y + (g1^24*t^7.65)/y + (3*t^7.84)/(g1^6*y) + (2*g1^16*t^8.1)/y + (6*t^8.29)/(g1^14*y) + (9*g1^8*t^8.55)/y + (6*t^8.74)/(g1^22*y) + (2*g1^30*t^8.81)/y - (t^4.61*y)/g1^2 - (2*t^6.68*y)/g1^12 + (3*t^7.13*y)/g1^20 + 6*g1^2*t^7.39*y + g1^24*t^7.65*y + (3*t^7.84*y)/g1^6 + 2*g1^16*t^8.1*y + (6*t^8.29*y)/g1^14 + 9*g1^8*t^8.55*y + (6*t^8.74*y)/g1^22 + 2*g1^30*t^8.81*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2060 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1q_2\tilde{q}_1$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_6q_1\tilde{q}_2$ 0.6432 0.8672 0.7416 [X:[], M:[0.9308, 1.2075, 0.7925, 0.6729, 0.6729, 0.8112], q:[0.7327, 0.3364], qb:[0.3364, 0.4561], phi:[0.5346]] 3*t^2.02 + 2*t^2.38 + t^2.43 + t^2.79 + 2*t^3.21 + 3*t^3.62 + 6*t^4.04 + t^4.34 + 6*t^4.4 + 3*t^4.45 + 3*t^4.76 + 5*t^4.81 + t^4.87 + 2*t^5.17 + 7*t^5.23 + 4*t^5.59 + 9*t^5.64 + t^6. - t^4.6/y - t^4.6*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
565 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1q_2\tilde{q}_1$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_2$ 0.6075 0.7997 0.7596 [X:[], M:[0.9243, 1.2271, 0.7729, 0.6893], q:[0.7311, 0.3446], qb:[0.3446, 0.4283], phi:[0.5379]] 2*t^2.07 + 2*t^2.32 + t^2.77 + 2*t^3.23 + t^3.48 + 3*t^3.68 + t^3.93 + 3*t^4.14 + t^4.18 + 4*t^4.39 + 3*t^4.64 + 2*t^4.84 + 2*t^5.09 + 4*t^5.29 + 6*t^5.55 + 4*t^5.75 + 2*t^5.8 + 3*t^6. - t^4.61/y - t^4.61*y detail