Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
2060 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1q_2\tilde{q}_1$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_6q_1\tilde{q}_2$ | 0.6432 | 0.8672 | 0.7416 | [X:[], M:[0.9308, 1.2075, 0.7925, 0.6729, 0.6729, 0.8112], q:[0.7327, 0.3364], qb:[0.3364, 0.4561], phi:[0.5346]] | [X:[], M:[[4], [-12], [12], [-10], [-10], [-18]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_4$, $ M_5$, $ q_2\tilde{q}_1$, $ M_3$, $ q_2\tilde{q}_2$, $ M_6$, $ M_1$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ M_2$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$, $ M_4^2$, $ M_4M_5$, $ M_5^2$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_3M_4$, $ M_3M_5$, $ M_3q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_4M_6$, $ M_5M_6$, $ M_6q_2\tilde{q}_1$, $ M_3^2$, $ M_3q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_1M_4$, $ M_1M_5$, $ M_3M_6$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ M_6^2$, $ M_1M_3$, $ \phi_1q_1\tilde{q}_2$, $ M_1M_6$, $ M_4\phi_1^2$, $ M_5\phi_1^2$, $ M_4q_1\tilde{q}_1$, $ M_5q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ M_1^2$, $ M_3\phi_1^2$, $ M_3q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ M_2M_4$, $ M_2M_5$, $ M_6\phi_1^2$, $ M_4\phi_1q_2^2$, $ M_5\phi_1q_2^2$, $ M_6q_1\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ M_4\phi_1\tilde{q}_1^2$, $ M_5\phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1^3$ | $M_3\phi_1q_2^2$, $ M_3\phi_1\tilde{q}_1^2$, $ \phi_1q_2^3\tilde{q}_2$ | 1 | 3*t^2.02 + 2*t^2.38 + t^2.43 + t^2.79 + 2*t^3.21 + 3*t^3.62 + 6*t^4.04 + t^4.34 + 6*t^4.4 + 3*t^4.45 + 3*t^4.76 + 5*t^4.81 + t^4.87 + 2*t^5.17 + 7*t^5.23 + 4*t^5.59 + 9*t^5.64 + t^6. + 13*t^6.06 + 13*t^6.41 + 6*t^6.47 + 2*t^6.72 + 7*t^6.77 + 15*t^6.83 + 3*t^6.89 + 4*t^7.13 + 3*t^7.19 + 20*t^7.24 + t^7.3 + 3*t^7.55 + 6*t^7.6 + 19*t^7.66 + 3*t^7.96 + 3*t^8.02 + 24*t^8.07 - 4*t^8.38 + 22*t^8.43 + 13*t^8.49 + t^8.68 + 6*t^8.79 + 29*t^8.85 + 6*t^8.9 - t^4.6/y - (2*t^6.62)/y + (2*t^7.04)/y + (6*t^7.4)/y + (3*t^7.45)/y + t^7.76/y + (5*t^7.81)/y + (3*t^8.17)/y + (7*t^8.23)/y + (6*t^8.59)/y + (8*t^8.64)/y - t^4.6*y - 2*t^6.62*y + 2*t^7.04*y + 6*t^7.4*y + 3*t^7.45*y + t^7.76*y + 5*t^7.81*y + 3*t^8.17*y + 7*t^8.23*y + 6*t^8.59*y + 8*t^8.64*y | (3*t^2.02)/g1^10 + 2*g1^12*t^2.38 + t^2.43/g1^18 + g1^4*t^2.79 + (2*t^3.21)/g1^4 + (3*t^3.62)/g1^12 + (6*t^4.04)/g1^20 + g1^32*t^4.34 + 6*g1^2*t^4.4 + (3*t^4.45)/g1^28 + 3*g1^24*t^4.76 + (5*t^4.81)/g1^6 + t^4.87/g1^36 + 2*g1^16*t^5.17 + (7*t^5.23)/g1^14 + 4*g1^8*t^5.59 + (9*t^5.64)/g1^22 + t^6. + (13*t^6.06)/g1^30 + (13*t^6.41)/g1^8 + (6*t^6.47)/g1^38 + 2*g1^44*t^6.72 + 7*g1^14*t^6.77 + (15*t^6.83)/g1^16 + (3*t^6.89)/g1^46 + 4*g1^36*t^7.13 + 3*g1^6*t^7.19 + (20*t^7.24)/g1^24 + t^7.3/g1^54 + 3*g1^28*t^7.55 + (6*t^7.6)/g1^2 + (19*t^7.66)/g1^32 + 3*g1^20*t^7.96 + (3*t^8.02)/g1^10 + (24*t^8.07)/g1^40 - 4*g1^12*t^8.38 + (22*t^8.43)/g1^18 + (13*t^8.49)/g1^48 + g1^64*t^8.68 + 6*g1^4*t^8.79 + (29*t^8.85)/g1^26 + (6*t^8.9)/g1^56 - t^4.6/(g1^2*y) - (2*t^6.62)/(g1^12*y) + (2*t^7.04)/(g1^20*y) + (6*g1^2*t^7.4)/y + (3*t^7.45)/(g1^28*y) + (g1^24*t^7.76)/y + (5*t^7.81)/(g1^6*y) + (3*g1^16*t^8.17)/y + (7*t^8.23)/(g1^14*y) + (6*g1^8*t^8.59)/y + (8*t^8.64)/(g1^22*y) - (t^4.6*y)/g1^2 - (2*t^6.62*y)/g1^12 + (2*t^7.04*y)/g1^20 + 6*g1^2*t^7.4*y + (3*t^7.45*y)/g1^28 + g1^24*t^7.76*y + (5*t^7.81*y)/g1^6 + 3*g1^16*t^8.17*y + (7*t^8.23*y)/g1^14 + 6*g1^8*t^8.59*y + (8*t^8.64*y)/g1^22 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
877 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1q_2\tilde{q}_1$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ | 0.6282 | 0.8399 | 0.7479 | [X:[], M:[0.9249, 1.2252, 0.7748, 0.6877, 0.6877], q:[0.7312, 0.3438], qb:[0.3438, 0.4309], phi:[0.5375]] | 3*t^2.06 + 2*t^2.32 + t^2.77 + 2*t^3.23 + t^3.49 + 3*t^3.68 + 6*t^4.13 + t^4.2 + 6*t^4.39 + 3*t^4.65 + 3*t^4.84 + 2*t^5.1 + 6*t^5.29 + 7*t^5.55 + 7*t^5.74 + 2*t^5.81 + t^6. - t^4.61/y - t^4.61*y | detail |