Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
865 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{3}M_{5}$ | 0.605 | 0.7784 | 0.7772 | [M:[1.0, 0.7751, 0.7751, 0.6687, 1.2249], q:[0.7781, 0.2219], qb:[0.5592, 0.6657], phi:[0.4438]] | [M:[[0], [8], [8], [-6], [-8]], q:[[-1], [1]], qb:[[-11], [3]], phi:[[2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{4}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{5}$, ${ }M_{4}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}q_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{3}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}^{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$ | ${}$ | -3 | t^2.006 + t^2.325 + t^2.343 + 3*t^2.663 + t^3. + t^3.675 + 2*t^4.012 + 2*t^4.331 + t^4.349 + t^4.651 + 3*t^4.669 + 2*t^4.687 + 2*t^4.988 + 5*t^5.006 + 8*t^5.325 + t^5.343 + 2*t^5.663 - 3*t^6. + 3*t^6.018 - 2*t^6.319 + 4*t^6.337 + 2*t^6.355 + t^6.657 + 5*t^6.675 + 2*t^6.693 + t^6.976 + 3*t^6.994 + 4*t^7.012 + 2*t^7.03 + 2*t^7.313 + 5*t^7.331 + 7*t^7.349 + 4*t^7.651 + 8*t^7.669 + 2*t^7.687 + 13*t^7.988 - t^8.006 + 2*t^8.024 - t^8.325 - 3*t^8.343 + 4*t^8.361 - t^8.645 - 12*t^8.663 + 5*t^8.681 + 4*t^8.699 - 4*t^8.982 - t^4.331/y - t^6.337/y - t^6.657/y - t^6.994/y + t^7.331/y + t^7.349/y + (5*t^7.669)/y + (3*t^7.988)/y + (5*t^8.006)/y + (5*t^8.325)/y + (2*t^8.663)/y + t^8.681/y - t^8.982/y - t^4.331*y - t^6.337*y - t^6.657*y - t^6.994*y + t^7.331*y + t^7.349*y + 5*t^7.669*y + 3*t^7.988*y + 5*t^8.006*y + 5*t^8.325*y + 2*t^8.663*y + t^8.681*y - t^8.982*y | t^2.006/g1^6 + g1^8*t^2.325 + t^2.343/g1^10 + 3*g1^4*t^2.663 + t^3. + t^3.675/g1^8 + (2*t^4.012)/g1^12 + 2*g1^2*t^4.331 + t^4.349/g1^16 + g1^16*t^4.651 + (3*t^4.669)/g1^2 + (2*t^4.687)/g1^20 + 2*g1^12*t^4.988 + (5*t^5.006)/g1^6 + 8*g1^8*t^5.325 + t^5.343/g1^10 + 2*g1^4*t^5.663 - 3*t^6. + (3*t^6.018)/g1^18 - 2*g1^14*t^6.319 + (4*t^6.337)/g1^4 + (2*t^6.355)/g1^22 + g1^10*t^6.657 + (5*t^6.675)/g1^8 + (2*t^6.693)/g1^26 + g1^24*t^6.976 + 3*g1^6*t^6.994 + (4*t^7.012)/g1^12 + (2*t^7.03)/g1^30 + 2*g1^20*t^7.313 + 5*g1^2*t^7.331 + (7*t^7.349)/g1^16 + 4*g1^16*t^7.651 + (8*t^7.669)/g1^2 + (2*t^7.687)/g1^20 + 13*g1^12*t^7.988 - t^8.006/g1^6 + (2*t^8.024)/g1^24 - g1^8*t^8.325 - (3*t^8.343)/g1^10 + (4*t^8.361)/g1^28 - g1^22*t^8.645 - 12*g1^4*t^8.663 + (5*t^8.681)/g1^14 + (4*t^8.699)/g1^32 - 4*g1^18*t^8.982 - (g1^2*t^4.331)/y - t^6.337/(g1^4*y) - (g1^10*t^6.657)/y - (g1^6*t^6.994)/y + (g1^2*t^7.331)/y + t^7.349/(g1^16*y) + (5*t^7.669)/(g1^2*y) + (3*g1^12*t^7.988)/y + (5*t^8.006)/(g1^6*y) + (5*g1^8*t^8.325)/y + (2*g1^4*t^8.663)/y + t^8.681/(g1^14*y) - (g1^18*t^8.982)/y - g1^2*t^4.331*y - (t^6.337*y)/g1^4 - g1^10*t^6.657*y - g1^6*t^6.994*y + g1^2*t^7.331*y + (t^7.349*y)/g1^16 + (5*t^7.669*y)/g1^2 + 3*g1^12*t^7.988*y + (5*t^8.006*y)/g1^6 + 5*g1^8*t^8.325*y + 2*g1^4*t^8.663*y + (t^8.681*y)/g1^14 - g1^18*t^8.982*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
550 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ | 0.6253 | 0.8097 | 0.7722 | [M:[1.0, 0.9511, 0.7439, 0.7439, 1.0489], q:[0.7561, 0.2439], qb:[0.5244, 0.5244], phi:[0.4878]] | 2*t^2.232 + 2*t^2.305 + 2*t^2.927 + t^3. + t^3.147 + 2*t^3.842 + 3*t^4.463 + 4*t^4.537 + 6*t^4.61 + 2*t^5.158 + 6*t^5.232 + 2*t^5.305 + 2*t^5.378 + 2*t^5.452 + 3*t^5.853 + t^5.927 - 5*t^6. - t^4.463/y - t^4.463*y | detail |