Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47081 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{4}M_{5}$ 0.605 0.7784 0.7772 [M:[1.0, 0.7751, 0.6687, 0.7751, 1.2249], q:[0.7781, 0.2219], qb:[0.6657, 0.5592], phi:[0.4438]] [M:[[0], [-8], [6], [-8], [8]], q:[[1], [-1]], qb:[[-3], [11]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{4}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }M_{5}$, ${ }M_{3}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}q_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{3}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}^{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$ ${}$ -3 t^2.006 + t^2.325 + t^2.343 + 3*t^2.663 + t^3. + t^3.675 + 2*t^4.012 + 2*t^4.331 + t^4.349 + t^4.651 + 3*t^4.669 + 2*t^4.687 + 2*t^4.988 + 5*t^5.006 + 8*t^5.325 + t^5.343 + 2*t^5.663 - 3*t^6. + 3*t^6.018 - 2*t^6.319 + 4*t^6.337 + 2*t^6.355 + t^6.657 + 5*t^6.675 + 2*t^6.693 + t^6.976 + 3*t^6.994 + 4*t^7.012 + 2*t^7.03 + 2*t^7.313 + 5*t^7.331 + 7*t^7.349 + 4*t^7.651 + 8*t^7.669 + 2*t^7.687 + 13*t^7.988 - t^8.006 + 2*t^8.024 - t^8.325 - 3*t^8.343 + 4*t^8.361 - t^8.645 - 12*t^8.663 + 5*t^8.681 + 4*t^8.699 - 4*t^8.982 - t^4.331/y - t^6.337/y - t^6.657/y - t^6.994/y + t^7.331/y + t^7.349/y + (5*t^7.669)/y + (3*t^7.988)/y + (5*t^8.006)/y + (5*t^8.325)/y + (2*t^8.663)/y + t^8.681/y - t^8.982/y - t^4.331*y - t^6.337*y - t^6.657*y - t^6.994*y + t^7.331*y + t^7.349*y + 5*t^7.669*y + 3*t^7.988*y + 5*t^8.006*y + 5*t^8.325*y + 2*t^8.663*y + t^8.681*y - t^8.982*y g1^6*t^2.006 + t^2.325/g1^8 + g1^10*t^2.343 + (3*t^2.663)/g1^4 + t^3. + g1^8*t^3.675 + 2*g1^12*t^4.012 + (2*t^4.331)/g1^2 + g1^16*t^4.349 + t^4.651/g1^16 + 3*g1^2*t^4.669 + 2*g1^20*t^4.687 + (2*t^4.988)/g1^12 + 5*g1^6*t^5.006 + (8*t^5.325)/g1^8 + g1^10*t^5.343 + (2*t^5.663)/g1^4 - 3*t^6. + 3*g1^18*t^6.018 - (2*t^6.319)/g1^14 + 4*g1^4*t^6.337 + 2*g1^22*t^6.355 + t^6.657/g1^10 + 5*g1^8*t^6.675 + 2*g1^26*t^6.693 + t^6.976/g1^24 + (3*t^6.994)/g1^6 + 4*g1^12*t^7.012 + 2*g1^30*t^7.03 + (2*t^7.313)/g1^20 + (5*t^7.331)/g1^2 + 7*g1^16*t^7.349 + (4*t^7.651)/g1^16 + 8*g1^2*t^7.669 + 2*g1^20*t^7.687 + (13*t^7.988)/g1^12 - g1^6*t^8.006 + 2*g1^24*t^8.024 - t^8.325/g1^8 - 3*g1^10*t^8.343 + 4*g1^28*t^8.361 - t^8.645/g1^22 - (12*t^8.663)/g1^4 + 5*g1^14*t^8.681 + 4*g1^32*t^8.699 - (4*t^8.982)/g1^18 - t^4.331/(g1^2*y) - (g1^4*t^6.337)/y - t^6.657/(g1^10*y) - t^6.994/(g1^6*y) + t^7.331/(g1^2*y) + (g1^16*t^7.349)/y + (5*g1^2*t^7.669)/y + (3*t^7.988)/(g1^12*y) + (5*g1^6*t^8.006)/y + (5*t^8.325)/(g1^8*y) + (2*t^8.663)/(g1^4*y) + (g1^14*t^8.681)/y - t^8.982/(g1^18*y) - (t^4.331*y)/g1^2 - g1^4*t^6.337*y - (t^6.657*y)/g1^10 - (t^6.994*y)/g1^6 + (t^7.331*y)/g1^2 + g1^16*t^7.349*y + 5*g1^2*t^7.669*y + (3*t^7.988*y)/g1^12 + 5*g1^6*t^8.006*y + (5*t^8.325*y)/g1^8 + (2*t^8.663*y)/g1^4 + g1^14*t^8.681*y - (t^8.982*y)/g1^18


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46535 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ 0.6253 0.8097 0.7722 [M:[1.0, 0.9511, 0.7439, 0.7439, 1.0489], q:[0.7561, 0.2439], qb:[0.5244, 0.5244], phi:[0.4878]] 2*t^2.232 + 2*t^2.305 + 2*t^2.927 + t^3. + t^3.147 + 2*t^3.842 + 3*t^4.463 + 4*t^4.537 + 6*t^4.61 + 2*t^5.158 + 6*t^5.232 + 2*t^5.305 + 2*t^5.378 + 2*t^5.452 + 3*t^5.853 + t^5.927 - 5*t^6. - t^4.463/y - t^4.463*y detail