Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
834 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{1}^{2}$ | 0.7146 | 0.8745 | 0.8171 | [M:[1.0, 1.0767, 0.8466, 1.0202, 0.8264, 0.9798], q:[0.4798, 0.5202], qb:[0.5, 0.6534], phi:[0.4617]] | [M:[[0, 0], [0, 2], [0, -4], [1, 0], [-1, -4], [-1, 0]], q:[[-1, 0], [1, 0]], qb:[[0, 0], [0, 4]], phi:[[0, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{5}$, ${ }M_{3}$, ${ }M_{6}$, ${ }M_{1}$, ${ }M_{4}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{6}$, ${ }M_{1}M_{3}$, ${ }M_{4}M_{5}$, ${ }M_{2}M_{5}$, ${ }M_{2}M_{3}$, ${ }M_{6}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$ | ${}$ | -2 | t^2.479 + t^2.54 + t^2.939 + t^3. + t^3.061 + t^3.23 + t^3.399 + t^4.264 + t^4.324 + 2*t^4.385 + t^4.446 + t^4.506 + t^4.784 + t^4.845 + t^4.906 + t^4.958 + t^5.019 + t^5.08 + t^5.305 + t^5.418 + t^5.479 + t^5.54 + t^5.709 + t^5.77 + t^5.879 - 2*t^6. - t^6.061 + t^6.169 + t^6.23 + t^6.291 + t^6.339 - t^6.521 + t^6.629 + t^6.743 + t^6.799 + 2*t^6.803 + 2*t^6.864 + 2*t^6.925 + t^6.986 + t^7.046 + t^7.203 + 2*t^7.264 + 3*t^7.324 + 2*t^7.385 + t^7.437 + 2*t^7.446 + t^7.498 + t^7.506 + t^7.559 + t^7.567 + t^7.62 + t^7.663 + t^7.724 + 2*t^7.784 + t^7.845 + t^7.898 + t^7.958 + t^8.019 + t^8.08 + t^8.184 + t^8.188 + t^8.244 + t^8.249 + t^8.305 + t^8.31 + t^8.358 - t^8.418 - 3*t^8.479 + t^8.527 - 4*t^8.54 + t^8.588 - 2*t^8.601 + 3*t^8.648 - t^8.661 + t^8.705 + 3*t^8.709 + 4*t^8.77 + t^8.818 + 2*t^8.831 - t^8.879 + 2*t^8.891 - 4*t^8.939 + t^8.952 - t^4.385/y - t^6.864/y - t^6.925/y + t^7.845/y + t^7.906/y + t^8.019/y + t^8.418/y + (2*t^8.479)/y + (2*t^8.54)/y + t^8.601/y + t^8.709/y + t^8.77/y + t^8.879/y + (2*t^8.939)/y - t^4.385*y - t^6.864*y - t^6.925*y + t^7.845*y + t^7.906*y + t^8.019*y + t^8.418*y + 2*t^8.479*y + 2*t^8.54*y + t^8.601*y + t^8.709*y + t^8.77*y + t^8.879*y + 2*t^8.939*y | t^2.479/(g1*g2^4) + t^2.54/g2^4 + t^2.939/g1 + t^3. + g1*t^3.061 + g2^2*t^3.23 + (g2^4*t^3.399)/g1 + t^4.264/(g1^2*g2) + t^4.324/(g1*g2) + (2*t^4.385)/g2 + (g1*t^4.446)/g2 + (g1^2*t^4.506)/g2 + (g2^3*t^4.784)/g1 + g2^3*t^4.845 + g1*g2^3*t^4.906 + t^4.958/(g1^2*g2^8) + t^5.019/(g1*g2^8) + t^5.08/g2^8 + g2^7*t^5.305 + t^5.418/(g1^2*g2^4) + t^5.479/(g1*g2^4) + t^5.54/g2^4 + t^5.709/(g1*g2^2) + t^5.77/g2^2 + t^5.879/g1^2 - 2*t^6. - g1*t^6.061 + (g2^2*t^6.169)/g1 + g2^2*t^6.23 + g1*g2^2*t^6.291 + (g2^4*t^6.339)/g1^2 - g1*g2^4*t^6.521 + (g2^6*t^6.629)/g1 + t^6.743/(g1^3*g2^5) + (g2^8*t^6.799)/g1^2 + (2*t^6.803)/(g1^2*g2^5) + (2*t^6.864)/(g1*g2^5) + (2*t^6.925)/g2^5 + (g1*t^6.986)/g2^5 + (g1^2*t^7.046)/g2^5 + t^7.203/(g1^3*g2) + (2*t^7.264)/(g1^2*g2) + (3*t^7.324)/(g1*g2) + (2*t^7.385)/g2 + t^7.437/(g1^3*g2^12) + (2*g1*t^7.446)/g2 + t^7.498/(g1^2*g2^12) + (g1^2*t^7.506)/g2 + t^7.559/(g1*g2^12) + (g1^3*t^7.567)/g2 + t^7.62/g2^12 + (g2^3*t^7.663)/g1^3 + (g2^3*t^7.724)/g1^2 + (2*g2^3*t^7.784)/g1 + g2^3*t^7.845 + t^7.898/(g1^3*g2^8) + t^7.958/(g1^2*g2^8) + t^8.019/(g1*g2^8) + t^8.08/g2^8 + (g2^7*t^8.184)/g1^2 + t^8.188/(g1^2*g2^6) + (g2^7*t^8.244)/g1 + t^8.249/(g1*g2^6) + g2^7*t^8.305 + t^8.31/g2^6 + t^8.358/(g1^3*g2^4) - t^8.418/(g1^2*g2^4) - (3*t^8.479)/(g1*g2^4) + t^8.527/(g1^4*g2^2) - (4*t^8.54)/g2^4 + t^8.588/(g1^3*g2^2) - (2*g1*t^8.601)/g2^4 + (3*t^8.648)/(g1^2*g2^2) - (g1^2*t^8.661)/g2^4 + (g2^11*t^8.705)/g1 + (3*t^8.709)/(g1*g2^2) + (4*t^8.77)/g2^2 + t^8.818/g1^3 + (2*g1*t^8.831)/g2^2 - t^8.879/g1^2 + (2*g1^2*t^8.891)/g2^2 - (4*t^8.939)/g1 + (g1^3*t^8.952)/g2^2 - t^4.385/(g2*y) - t^6.864/(g1*g2^5*y) - t^6.925/(g2^5*y) + (g2^3*t^7.845)/y + (g1*g2^3*t^7.906)/y + t^8.019/(g1*g2^8*y) + t^8.418/(g1^2*g2^4*y) + (2*t^8.479)/(g1*g2^4*y) + (2*t^8.54)/(g2^4*y) + (g1*t^8.601)/(g2^4*y) + t^8.709/(g1*g2^2*y) + t^8.77/(g2^2*y) + t^8.879/(g1^2*y) + (2*t^8.939)/(g1*y) - (t^4.385*y)/g2 - (t^6.864*y)/(g1*g2^5) - (t^6.925*y)/g2^5 + g2^3*t^7.845*y + g1*g2^3*t^7.906*y + (t^8.019*y)/(g1*g2^8) + (t^8.418*y)/(g1^2*g2^4) + (2*t^8.479*y)/(g1*g2^4) + (2*t^8.54*y)/g2^4 + (g1*t^8.601*y)/g2^4 + (t^8.709*y)/(g1*g2^2) + (t^8.77*y)/g2^2 + (t^8.879*y)/g1^2 + (2*t^8.939*y)/g1 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
1323 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{1}^{2}$ + ${ }M_{3}M_{5}$ | 0.6917 | 0.8473 | 0.8164 | [M:[1.0, 1.0032, 0.9935, 0.987, 1.0065, 1.013], q:[0.513, 0.487], qb:[0.5, 0.5065], phi:[0.4984]] | t^2.961 + t^2.981 + t^3. + t^3.01 + t^3.019 + t^3.039 + t^3.058 + t^4.417 + t^4.456 + t^4.476 + 2*t^4.495 + t^4.515 + 2*t^4.534 + t^4.554 + t^4.573 + t^5.971 + t^5.99 - t^6. - t^4.495/y - t^4.495*y | detail | |
1324 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{1}^{2}$ + ${ }M_{5}M_{7}$ | 0.7019 | 0.853 | 0.8229 | [M:[1.0, 1.0554, 0.8892, 1.0, 0.8892, 1.0, 1.1108], q:[0.5, 0.5], qb:[0.5, 0.6108], phi:[0.4723]] | t^2.668 + 3*t^3. + t^3.166 + 2*t^3.332 + 6*t^4.417 + 3*t^4.749 + t^5.082 + t^5.335 + t^5.834 - 2*t^6. - t^4.417/y - t^4.417*y | detail | |
1322 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{1}^{2}$ + ${ }M_{5}^{2}$ | 0.695 | 0.8495 | 0.8181 | [M:[1.0, 1.0186, 0.9627, 0.9627, 1.0, 1.0373], q:[0.5373, 0.4627], qb:[0.5, 0.5373], phi:[0.4907]] | 2*t^2.888 + 2*t^3. + t^3.056 + t^3.112 + t^3.224 + t^4.248 + t^4.36 + 3*t^4.472 + 2*t^4.584 + 3*t^4.696 + t^5.776 + t^5.888 + 2*t^5.944 - t^6. - t^4.472/y - t^4.472*y | detail | |
1325 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{1}^{2}$ + ${ }M_{6}M_{7}$ | 0.7139 | 0.8726 | 0.8181 | [M:[1.0, 1.0786, 0.8428, 0.9943, 0.8485, 1.0057, 0.9943], q:[0.5057, 0.4943], qb:[0.5, 0.6572], phi:[0.4607]] | t^2.528 + t^2.545 + 2*t^2.983 + t^3. + t^3.236 + t^3.489 + t^4.348 + t^4.365 + 2*t^4.382 + t^4.399 + t^4.416 + t^4.837 + t^4.854 + t^4.871 + t^5.057 + t^5.074 + t^5.091 + t^5.326 + t^5.511 + 2*t^5.528 + t^5.764 + t^5.781 + 2*t^5.966 - 3*t^6. - t^4.382/y - t^4.382*y | detail | |
2015 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}$ | 0.6087 | 0.7818 | 0.7785 | [M:[1.0, 1.0274, 0.9453, 1.2568, 0.6884, 0.7432], q:[0.2432, 0.7568], qb:[0.5, 0.5547], phi:[0.4863]] | t^2.065 + t^2.229 + t^2.394 + t^2.836 + t^2.918 + t^3. + t^3.082 + t^3.688 + t^3.771 + t^3.853 + t^4.13 + t^4.295 + 3*t^4.459 + 2*t^4.623 + 2*t^4.787 + t^4.901 + t^4.983 + t^5.065 + 2*t^5.147 + t^5.229 + 2*t^5.312 + t^5.394 + t^5.476 + t^5.672 + 2*t^5.754 + 2*t^5.836 + 3*t^5.918 - t^6. - t^4.459/y - t^4.459*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
535 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ | 0.7203 | 0.8807 | 0.8179 | [M:[0.9121, 1.0959, 0.896, 1.0183, 0.7898, 0.9817], q:[0.5256, 0.5623], qb:[0.4561, 0.648], phi:[0.452]] | t^2.369 + t^2.688 + t^2.736 + t^2.945 + t^3.055 + t^3.288 + t^3.521 + t^4.093 + t^4.301 + t^4.411 + t^4.51 + t^4.62 + t^4.668 + t^4.73 + t^4.739 + t^4.877 + t^4.987 + t^5.057 + t^5.106 + t^5.244 + t^5.314 + t^5.376 + t^5.424 + t^5.473 + t^5.657 + t^5.89 + t^5.976 - 3*t^6. - t^4.356/y - t^4.356*y | detail |