Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1325 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ M_1^2$ + $ M_6M_7$ 0.7139 0.8726 0.8181 [X:[], M:[1.0, 1.0786, 0.8428, 0.9943, 0.8485, 1.0057, 0.9943], q:[0.5057, 0.4943], qb:[0.5, 0.6572], phi:[0.4607]] [X:[], M:[[0, 0], [0, 2], [0, -4], [1, 0], [-1, -4], [-1, 0], [1, 0]], q:[[-1, 0], [1, 0]], qb:[[0, 0], [0, 4]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_5$, $ M_4$, $ M_7$, $ M_1$, $ M_2$, $ q_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1q_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ M_3^2$, $ M_3M_5$, $ M_5^2$, $ \phi_1\tilde{q}_2^2$, $ M_3M_4$, $ M_3M_7$, $ M_1M_3$, $ M_4M_5$, $ M_5M_7$, $ M_2M_3$, $ M_2M_5$, $ M_4^2$, $ M_4M_7$, $ M_7^2$ . -3 t^2.53 + t^2.55 + 2*t^2.98 + t^3. + t^3.24 + t^3.49 + t^4.35 + t^4.36 + 2*t^4.38 + t^4.4 + t^4.42 + t^4.84 + t^4.85 + t^4.87 + t^5.06 + t^5.07 + t^5.09 + t^5.33 + t^5.51 + 2*t^5.53 + t^5.76 + t^5.78 + 2*t^5.97 - 3*t^6. - t^6.02 + 2*t^6.22 + t^6.24 - t^6.45 + t^6.47 + t^6.72 + t^6.88 + t^6.89 + 2*t^6.91 + 2*t^6.93 + 2*t^6.94 + t^6.96 + t^6.98 + 2*t^7.33 + 2*t^7.35 + 3*t^7.36 + 2*t^7.38 + 2*t^7.4 + t^7.42 + t^7.58 + t^7.6 + t^7.62 + t^7.64 + t^7.82 + t^7.84 + t^7.85 + t^7.87 + t^7.91 + t^8.04 + 2*t^8.06 + t^8.07 + t^8.29 + 2*t^8.31 + 2*t^8.33 + t^8.36 - 4*t^8.53 - 4*t^8.55 - 2*t^8.56 + t^8.7 + t^8.71 + 2*t^8.73 + 3*t^8.75 + 5*t^8.76 + 2*t^8.78 + 2*t^8.8 + t^8.81 + t^8.82 + t^8.83 + 2*t^8.95 - t^8.97 - 7*t^8.98 - t^4.38/y - t^6.91/y - t^6.93/y - t^7.36/y + t^7.4/y + t^7.84/y + t^7.85/y + t^8.07/y + (2*t^8.51)/y + (3*t^8.53)/y + t^8.55/y + t^8.76/y + t^8.78/y + t^8.97/y + (2*t^8.98)/y - t^4.38*y - t^6.91*y - t^6.93*y - t^7.36*y + t^7.4*y + t^7.84*y + t^7.85*y + t^8.07*y + 2*t^8.51*y + 3*t^8.53*y + t^8.55*y + t^8.76*y + t^8.78*y + t^8.97*y + 2*t^8.98*y t^2.53/g2^4 + t^2.55/(g1*g2^4) + 2*g1*t^2.98 + t^3. + g2^2*t^3.24 + (g2^4*t^3.49)/g1 + (g1^2*t^4.35)/g2 + (g1*t^4.36)/g2 + (2*t^4.38)/g2 + t^4.4/(g1*g2) + t^4.42/(g1^2*g2) + g1*g2^3*t^4.84 + g2^3*t^4.85 + (g2^3*t^4.87)/g1 + t^5.06/g2^8 + t^5.07/(g1*g2^8) + t^5.09/(g1^2*g2^8) + g2^7*t^5.33 + (g1*t^5.51)/g2^4 + (2*t^5.53)/g2^4 + t^5.76/g2^2 + t^5.78/(g1*g2^2) + 2*g1^2*t^5.97 - 3*t^6. - t^6.02/g1 + 2*g1*g2^2*t^6.22 + g2^2*t^6.24 - g1*g2^4*t^6.45 + g2^4*t^6.47 + (g2^6*t^6.72)/g1 + (g1^2*t^6.88)/g2^5 + (g1*t^6.89)/g2^5 + (2*t^6.91)/g2^5 + (2*t^6.93)/(g1*g2^5) + (2*t^6.94)/(g1^2*g2^5) + t^6.96/(g1^3*g2^5) + (g2^8*t^6.98)/g1^2 + (2*g1^3*t^7.33)/g2 + (2*g1^2*t^7.35)/g2 + (3*g1*t^7.36)/g2 + (2*t^7.38)/g2 + (2*t^7.4)/(g1*g2) + t^7.42/(g1^2*g2) + t^7.58/g2^12 + t^7.6/(g1*g2^12) + t^7.62/(g1^2*g2^12) + t^7.64/(g1^3*g2^12) + g1^2*g2^3*t^7.82 + g1*g2^3*t^7.84 + g2^3*t^7.85 + (g2^3*t^7.87)/g1 + (g2^3*t^7.91)/g1^3 + (g1*t^8.04)/g2^8 + (2*t^8.06)/g2^8 + t^8.07/(g1*g2^8) + t^8.29/g2^6 + t^8.31/(g1*g2^6) + g1*g2^7*t^8.31 + t^8.33/(g1^2*g2^6) + g2^7*t^8.33 + (g2^7*t^8.36)/g1^2 - (4*t^8.53)/g2^4 - (4*t^8.55)/(g1*g2^4) - (2*t^8.56)/(g1^2*g2^4) + (g1^4*t^8.7)/g2^2 + (g1^3*t^8.71)/g2^2 + (2*g1^2*t^8.73)/g2^2 + (3*g1*t^8.75)/g2^2 + (5*t^8.76)/g2^2 + (2*t^8.78)/(g1*g2^2) + (2*t^8.8)/(g1^2*g2^2) + (g2^11*t^8.81)/g1 + t^8.82/(g1^3*g2^2) + t^8.83/(g1^4*g2^2) + 2*g1^3*t^8.95 - g1^2*t^8.97 - 7*g1*t^8.98 - t^4.38/(g2*y) - t^6.91/(g2^5*y) - t^6.93/(g1*g2^5*y) - (g1*t^7.36)/(g2*y) + t^7.4/(g1*g2*y) + (g1*g2^3*t^7.84)/y + (g2^3*t^7.85)/y + t^8.07/(g1*g2^8*y) + (2*g1*t^8.51)/(g2^4*y) + (3*t^8.53)/(g2^4*y) + t^8.55/(g1*g2^4*y) + t^8.76/(g2^2*y) + t^8.78/(g1*g2^2*y) + (g1^2*t^8.97)/y + (2*g1*t^8.98)/y - (t^4.38*y)/g2 - (t^6.91*y)/g2^5 - (t^6.93*y)/(g1*g2^5) - (g1*t^7.36*y)/g2 + (t^7.4*y)/(g1*g2) + g1*g2^3*t^7.84*y + g2^3*t^7.85*y + (t^8.07*y)/(g1*g2^8) + (2*g1*t^8.51*y)/g2^4 + (3*t^8.53*y)/g2^4 + (t^8.55*y)/(g1*g2^4) + (t^8.76*y)/g2^2 + (t^8.78*y)/(g1*g2^2) + g1^2*t^8.97*y + 2*g1*t^8.98*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
834 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ M_1^2$ 0.7146 0.8745 0.8171 [X:[], M:[1.0, 1.0767, 0.8466, 1.0202, 0.8264, 0.9798], q:[0.4798, 0.5202], qb:[0.5, 0.6534], phi:[0.4617]] t^2.48 + t^2.54 + t^2.94 + t^3. + t^3.06 + t^3.23 + t^3.4 + t^4.26 + t^4.32 + 2*t^4.38 + t^4.45 + t^4.51 + t^4.78 + t^4.85 + t^4.91 + t^4.96 + t^5.02 + t^5.08 + t^5.31 + t^5.42 + t^5.48 + t^5.54 + t^5.71 + t^5.77 + t^5.88 - 2*t^6. - t^4.38/y - t^4.38*y detail