Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
833 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{3}^{2}$ | 0.7134 | 0.8733 | 0.8168 | [M:[0.86, 1.07, 1.0, 1.0244, 0.8356, 0.9756], q:[0.5455, 0.5944], qb:[0.43, 0.57], phi:[0.465]] | [M:[[0, -4], [0, 2], [0, 0], [1, -2], [-1, -2], [-1, 2]], q:[[-1, 4], [1, 0]], qb:[[0, -2], [0, 2]], phi:[[0, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{5}$, ${ }M_{1}$, ${ }M_{6}$, ${ }M_{3}$, ${ }M_{4}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{5}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{1}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{6}$, ${ }M_{1}M_{3}$, ${ }M_{4}M_{5}$, ${ }M_{2}M_{5}$, ${ }M_{1}M_{2}$, ${ }M_{6}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$ | ${}$ | -2 | t^2.507 + t^2.58 + t^2.927 + t^3. + t^3.073 + t^3.21 + t^3.347 + t^3.975 + t^4.322 + t^4.395 + t^4.468 + t^4.668 + t^4.742 + 2*t^4.815 + t^4.888 + t^4.962 + t^5.014 + t^5.087 + t^5.16 + t^5.433 + t^5.507 + t^5.58 + t^5.717 + t^5.79 + t^5.853 - 2*t^6. - t^6.073 + t^6.137 + t^6.21 + t^6.273 + t^6.283 + t^6.482 - t^6.493 + t^6.555 + t^6.557 + t^6.693 + t^6.828 + 2*t^6.902 + 2*t^6.975 + t^7.048 + t^7.175 + 2*t^7.248 + 3*t^7.322 + 2*t^7.395 + t^7.468 + t^7.52 + t^7.542 + t^7.594 + t^7.595 + t^7.667 + 2*t^7.668 + t^7.74 + 2*t^7.742 + t^7.815 + t^7.888 + t^7.94 + t^7.95 + t^7.962 + t^8.014 + t^8.015 + t^8.035 + t^8.087 + t^8.088 + t^8.162 + t^8.224 + 2*t^8.297 + t^8.36 + 2*t^8.37 + t^8.443 - 3*t^8.507 - 4*t^8.58 + 2*t^8.643 - 2*t^8.653 + 2*t^8.717 + t^8.78 + 3*t^8.79 - t^8.853 + t^8.863 - 4*t^8.927 + t^8.937 + t^8.989 + t^8.99 - t^4.395/y - t^6.902/y - t^6.975/y + t^7.815/y + t^7.888/y + t^8.087/y + t^8.433/y + (2*t^8.507)/y + (2*t^8.58)/y + t^8.653/y + t^8.717/y + t^8.79/y + t^8.853/y + (2*t^8.927)/y - t^4.395*y - t^6.902*y - t^6.975*y + t^7.815*y + t^7.888*y + t^8.087*y + t^8.433*y + 2*t^8.507*y + 2*t^8.58*y + t^8.653*y + t^8.717*y + t^8.79*y + t^8.853*y + 2*t^8.927*y | t^2.507/(g1*g2^2) + t^2.58/g2^4 + (g2^2*t^2.927)/g1 + t^3. + (g1*t^3.073)/g2^2 + g2^2*t^3.21 + (g2^6*t^3.347)/g1 + t^3.975/g2^5 + (g2*t^4.322)/g1 + t^4.395/g2 + (g1*t^4.468)/g2^3 + (g2^7*t^4.668)/g1^2 + (g2^5*t^4.742)/g1 + 2*g2^3*t^4.815 + g1*g2*t^4.888 + (g1^2*t^4.962)/g2 + t^5.014/(g1^2*g2^4) + t^5.087/(g1*g2^6) + t^5.16/g2^8 + t^5.433/g1^2 + t^5.507/(g1*g2^2) + t^5.58/g2^4 + t^5.717/g1 + t^5.79/g2^2 + (g2^4*t^5.853)/g1^2 - 2*t^6. - (g1*t^6.073)/g2^2 + (g2^4*t^6.137)/g1 + g2^2*t^6.21 + (g2^8*t^6.273)/g1^2 + g1*t^6.283 + t^6.482/(g1*g2^7) - g1*g2^2*t^6.493 + t^6.555/g2^9 + (g2^8*t^6.557)/g1 + (g2^12*t^6.693)/g1^2 + t^6.828/(g1^2*g2) + (2*t^6.902)/(g1*g2^3) + (2*t^6.975)/g2^5 + (g1*t^7.048)/g2^7 + (g2^5*t^7.175)/g1^3 + (2*g2^3*t^7.248)/g1^2 + (3*g2*t^7.322)/g1 + (2*t^7.395)/g2 + (g1*t^7.468)/g2^3 + t^7.52/(g1^3*g2^6) + (g1^2*t^7.542)/g2^5 + t^7.594/(g1^2*g2^8) + (g2^9*t^7.595)/g1^3 + t^7.667/(g1*g2^10) + (2*g2^7*t^7.668)/g1^2 + t^7.74/g2^12 + (2*g2^5*t^7.742)/g1 + g2^3*t^7.815 + g1*g2*t^7.888 + t^7.94/(g1^3*g2^2) + t^7.95/g2^10 + (g1^2*t^7.962)/g2 + t^8.014/(g1^2*g2^4) + (g2^13*t^8.015)/g1^3 + (g1^3*t^8.035)/g2^3 + t^8.087/(g1*g2^6) + (g2^11*t^8.088)/g1^2 + (g2^9*t^8.162)/g1 + t^8.224/(g1^2*g2^2) + (2*t^8.297)/(g1*g2^4) + (g2^2*t^8.36)/g1^3 + (2*t^8.37)/g2^6 + (g1*t^8.443)/g2^8 - (3*t^8.507)/(g1*g2^2) - (4*t^8.58)/g2^4 + (2*g2^2*t^8.643)/g1^2 - (2*g1*t^8.653)/g2^6 + (2*t^8.717)/g1 + (g2^6*t^8.78)/g1^3 + (3*t^8.79)/g2^2 - (g2^4*t^8.853)/g1^2 + (g1*t^8.863)/g2^4 - (4*g2^2*t^8.927)/g1 + (g1^2*t^8.937)/g2^6 + t^8.989/(g1^2*g2^9) + (g2^8*t^8.99)/g1^3 - t^4.395/(g2*y) - t^6.902/(g1*g2^3*y) - t^6.975/(g2^5*y) + (g2^3*t^7.815)/y + (g1*g2*t^7.888)/y + t^8.087/(g1*g2^6*y) + t^8.433/(g1^2*y) + (2*t^8.507)/(g1*g2^2*y) + (2*t^8.58)/(g2^4*y) + (g1*t^8.653)/(g2^6*y) + t^8.717/(g1*y) + t^8.79/(g2^2*y) + (g2^4*t^8.853)/(g1^2*y) + (2*g2^2*t^8.927)/(g1*y) - (t^4.395*y)/g2 - (t^6.902*y)/(g1*g2^3) - (t^6.975*y)/g2^5 + g2^3*t^7.815*y + g1*g2*t^7.888*y + (t^8.087*y)/(g1*g2^6) + (t^8.433*y)/g1^2 + (2*t^8.507*y)/(g1*g2^2) + (2*t^8.58*y)/g2^4 + (g1*t^8.653*y)/g2^6 + (t^8.717*y)/g1 + (t^8.79*y)/g2^2 + (g2^4*t^8.853*y)/g1^2 + (2*g2^2*t^8.927*y)/g1 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
1321 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{3}^{2}$ + ${ }M_{1}M_{5}$ | 0.6917 | 0.8473 | 0.8164 | [M:[0.9935, 1.0033, 1.0, 0.9869, 1.0065, 1.0131], q:[0.5164, 0.4902], qb:[0.4967, 0.5033], phi:[0.4984]] | t^2.961 + t^2.98 + t^3. + t^3.01 + t^3.02 + t^3.039 + t^3.059 + t^4.436 + t^4.456 + 2*t^4.475 + t^4.495 + 2*t^4.515 + t^4.534 + t^4.554 + t^4.593 + t^5.971 + t^5.99 - t^6. - t^4.495/y - t^4.495*y | detail | |
1317 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{3}^{2}$ + ${ }M_{3}M_{5}$ | 0.6951 | 0.8495 | 0.8182 | [M:[0.9616, 1.0192, 1.0, 0.9616, 1.0, 1.0384], q:[0.5575, 0.4808], qb:[0.4808, 0.5192], phi:[0.4904]] | 2*t^2.885 + 2*t^3. + t^3.058 + t^3.115 + t^3.23 + 3*t^4.356 + 2*t^4.471 + 3*t^4.586 + t^4.701 + t^4.817 + t^5.77 + t^5.885 + 2*t^5.942 - t^6. - t^4.471/y - t^4.471*y | detail | |
1320 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{3}^{2}$ + ${ }M_{5}M_{7}$ | 0.7014 | 0.8528 | 0.8224 | [M:[0.8973, 1.0514, 1.0, 1.0, 0.8973, 1.0, 1.1027], q:[0.5514, 0.5514], qb:[0.4486, 0.5514], phi:[0.4743]] | t^2.692 + 3*t^3. + t^3.154 + 2*t^3.308 + t^4.115 + 3*t^4.423 + 6*t^4.731 + t^5.384 + t^5.846 - 2*t^6. - t^4.423/y - t^4.423*y | detail | |
1318 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{3}^{2}$ + ${ }M_{6}M_{7}$ | 0.7125 | 0.871 | 0.818 | [M:[0.857, 1.0715, 1.0, 0.9945, 0.8625, 1.0055, 0.9945], q:[0.577, 0.566], qb:[0.4285, 0.5715], phi:[0.4643]] | t^2.571 + t^2.588 + 2*t^2.983 + t^3. + t^3.214 + t^3.446 + t^3.964 + t^4.376 + t^4.393 + t^4.409 + t^4.789 + t^4.805 + 2*t^4.822 + t^4.838 + t^4.855 + t^5.142 + t^5.159 + t^5.175 + t^5.554 + 2*t^5.571 + t^5.786 + t^5.802 + 2*t^5.967 - 3*t^6. - t^4.393/y - t^4.393*y | detail | |
1319 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{3}^{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ | 0.7342 | 0.9146 | 0.8027 | [M:[0.8619, 1.069, 1.0, 1.0246, 0.8374, 0.9754, 0.6726], q:[0.5445, 0.5936], qb:[0.431, 0.569], phi:[0.4655]] | t^2.018 + t^2.512 + t^2.586 + t^2.926 + t^3. + t^3.074 + t^3.207 + t^3.341 + t^4.036 + t^4.323 + t^4.396 + t^4.47 + t^4.53 + t^4.604 + t^4.663 + t^4.737 + 2*t^4.811 + t^4.884 + t^4.944 + t^4.958 + t^5.018 + t^5.024 + t^5.092 + t^5.098 + t^5.171 + t^5.225 + t^5.358 + t^5.438 + t^5.512 + t^5.586 + t^5.719 + t^5.793 + t^5.853 - 2*t^6. - t^4.396/y - t^4.396*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
535 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ | 0.7203 | 0.8807 | 0.8179 | [M:[0.9121, 1.0959, 0.896, 1.0183, 0.7898, 0.9817], q:[0.5256, 0.5623], qb:[0.4561, 0.648], phi:[0.452]] | t^2.369 + t^2.688 + t^2.736 + t^2.945 + t^3.055 + t^3.288 + t^3.521 + t^4.093 + t^4.301 + t^4.411 + t^4.51 + t^4.62 + t^4.668 + t^4.73 + t^4.739 + t^4.877 + t^4.987 + t^5.057 + t^5.106 + t^5.244 + t^5.314 + t^5.376 + t^5.424 + t^5.473 + t^5.657 + t^5.89 + t^5.976 - 3*t^6. - t^4.356/y - t^4.356*y | detail |