Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1318 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ M_3^2$ + $ M_6M_7$ 0.7125 0.871 0.818 [X:[], M:[0.857, 1.0715, 1.0, 0.9945, 0.8625, 1.0055, 0.9945], q:[0.577, 0.566], qb:[0.4285, 0.5715], phi:[0.4643]] [X:[], M:[[0, -4], [0, 2], [0, 0], [1, -2], [-1, -2], [-1, 2], [1, -2]], q:[[-1, 4], [1, 0]], qb:[[0, -2], [0, 2]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_5$, $ M_4$, $ M_7$, $ M_3$, $ M_2$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_1q_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1^2$, $ M_1^2$, $ M_1M_5$, $ M_5^2$, $ M_1M_4$, $ M_1M_7$, $ M_1M_3$, $ M_4M_5$, $ M_5M_7$, $ M_1M_2$, $ M_2M_5$, $ M_4^2$, $ M_4M_7$, $ M_7^2$ . -3 t^2.57 + t^2.59 + 2*t^2.98 + t^3. + t^3.21 + t^3.45 + t^3.96 + t^4.38 + t^4.39 + t^4.41 + t^4.79 + t^4.81 + 2*t^4.82 + t^4.84 + t^4.85 + t^5.14 + t^5.16 + t^5.18 + t^5.55 + 2*t^5.57 + t^5.79 + t^5.8 + 2*t^5.97 - 3*t^6. - t^6.02 + 2*t^6.2 + t^6.21 - t^6.41 + t^6.43 + t^6.53 + t^6.55 + t^6.66 + t^6.89 + 2*t^6.95 + 2*t^6.96 + t^6.98 + t^7. + 2*t^7.36 + 2*t^7.38 + 2*t^7.39 + 2*t^7.41 + t^7.43 + t^7.44 + t^7.71 + t^7.73 + t^7.75 + t^7.76 + 2*t^7.77 + 2*t^7.79 + 2*t^7.81 + t^7.82 + t^7.84 + t^7.85 + t^7.93 + t^8.13 + t^8.14 + t^8.16 + t^8.27 + t^8.28 + t^8.3 + t^8.34 + 2*t^8.36 + 2*t^8.37 + t^8.39 + t^8.54 - 4*t^8.57 - 4*t^8.59 - t^8.6 + t^8.75 + 2*t^8.77 + 4*t^8.79 + t^8.8 + t^8.82 + 2*t^8.95 - t^8.97 - 7*t^8.98 - t^4.39/y - t^6.96/y - t^6.98/y - t^7.38/y + t^7.41/y + t^7.81/y + t^7.82/y + t^8.16/y + (2*t^8.55)/y + (3*t^8.57)/y + t^8.59/y + t^8.79/y + t^8.8/y + t^8.97/y + (2*t^8.98)/y - t^4.39*y - t^6.96*y - t^6.98*y - t^7.38*y + t^7.41*y + t^7.81*y + t^7.82*y + t^8.16*y + 2*t^8.55*y + 3*t^8.57*y + t^8.59*y + t^8.79*y + t^8.8*y + t^8.97*y + 2*t^8.98*y t^2.57/g2^4 + t^2.59/(g1*g2^2) + (2*g1*t^2.98)/g2^2 + t^3. + g2^2*t^3.21 + (g2^6*t^3.45)/g1 + t^3.96/g2^5 + (g1*t^4.38)/g2^3 + t^4.39/g2 + (g2*t^4.41)/g1 + (g1^2*t^4.79)/g2 + g1*g2*t^4.81 + 2*g2^3*t^4.82 + (g2^5*t^4.84)/g1 + (g2^7*t^4.85)/g1^2 + t^5.14/g2^8 + t^5.16/(g1*g2^6) + t^5.18/(g1^2*g2^4) + (g1*t^5.55)/g2^6 + (2*t^5.57)/g2^4 + t^5.79/g2^2 + t^5.8/g1 + (2*g1^2*t^5.97)/g2^4 - 3*t^6. - (g2^2*t^6.02)/g1 + 2*g1*t^6.2 + g2^2*t^6.21 - g1*g2^2*t^6.41 + g2^4*t^6.43 + t^6.53/g2^9 + t^6.55/(g1*g2^7) + (g2^8*t^6.66)/g1 + (g2^12*t^6.89)/g1^2 + (2*g1*t^6.95)/g2^7 + (2*t^6.96)/g2^5 + t^6.98/(g1*g2^3) + t^7./(g1^2*g2) + (2*g1^2*t^7.36)/g2^5 + (2*g1*t^7.38)/g2^3 + (2*t^7.39)/g2 + (2*g2*t^7.41)/g1 + (g2^3*t^7.43)/g1^2 + (g2^5*t^7.44)/g1^3 + t^7.71/g2^12 + t^7.73/(g1*g2^10) + t^7.75/(g1^2*g2^8) + t^7.76/(g1^3*g2^6) + (2*g1^3*t^7.77)/g2^3 + (2*g1^2*t^7.79)/g2 + 2*g1*g2*t^7.81 + g2^3*t^7.82 + (g2^5*t^7.84)/g1 + (g2^7*t^7.85)/g1^2 + t^7.93/g2^10 + (g1*t^8.13)/g2^10 + t^8.14/g2^8 + t^8.16/(g1*g2^6) + (g2^9*t^8.27)/g1 + (g2^11*t^8.28)/g1^2 + (g2^13*t^8.3)/g1^3 + (g1*t^8.34)/g2^8 + (2*t^8.36)/g2^6 + (2*t^8.37)/(g1*g2^4) + t^8.39/(g1^2*g2^2) + (g1^2*t^8.54)/g2^8 - (4*t^8.57)/g2^4 - (4*t^8.59)/(g1*g2^2) - t^8.6/g1^2 + (g1^2*t^8.75)/g2^6 + (2*g1*t^8.77)/g2^4 + (4*t^8.79)/g2^2 + t^8.8/g1 + (g2^2*t^8.82)/g1^2 + (2*g1^3*t^8.95)/g2^6 - (g1^2*t^8.97)/g2^4 - (7*g1*t^8.98)/g2^2 - t^4.39/(g2*y) - t^6.96/(g2^5*y) - t^6.98/(g1*g2^3*y) - (g1*t^7.38)/(g2^3*y) + (g2*t^7.41)/(g1*y) + (g1*g2*t^7.81)/y + (g2^3*t^7.82)/y + t^8.16/(g1*g2^6*y) + (2*g1*t^8.55)/(g2^6*y) + (3*t^8.57)/(g2^4*y) + t^8.59/(g1*g2^2*y) + t^8.79/(g2^2*y) + t^8.8/(g1*y) + (g1^2*t^8.97)/(g2^4*y) + (2*g1*t^8.98)/(g2^2*y) - (t^4.39*y)/g2 - (t^6.96*y)/g2^5 - (t^6.98*y)/(g1*g2^3) - (g1*t^7.38*y)/g2^3 + (g2*t^7.41*y)/g1 + g1*g2*t^7.81*y + g2^3*t^7.82*y + (t^8.16*y)/(g1*g2^6) + (2*g1*t^8.55*y)/g2^6 + (3*t^8.57*y)/g2^4 + (t^8.59*y)/(g1*g2^2) + (t^8.79*y)/g2^2 + (t^8.8*y)/g1 + (g1^2*t^8.97*y)/g2^4 + (2*g1*t^8.98*y)/g2^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
833 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ M_3^2$ 0.7134 0.8733 0.8168 [X:[], M:[0.86, 1.07, 1.0, 1.0244, 0.8356, 0.9756], q:[0.5455, 0.5944], qb:[0.43, 0.57], phi:[0.465]] t^2.51 + t^2.58 + t^2.93 + t^3. + t^3.07 + t^3.21 + t^3.35 + t^3.98 + t^4.32 + t^4.4 + t^4.47 + t^4.67 + t^4.74 + 2*t^4.81 + t^4.89 + t^4.96 + t^5.01 + t^5.09 + t^5.16 + t^5.43 + t^5.51 + t^5.58 + t^5.72 + t^5.79 + t^5.85 - 2*t^6. - t^4.4/y - t^4.4*y detail