Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
83 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_2^2$ 0.7184 0.8712 0.8246 [X:[], M:[0.7821, 1.0], q:[0.609, 0.609], qb:[0.5, 0.5], phi:[0.4455]] [X:[], M:[[-4, -4, 0], [0, 0, 0]], q:[[4, 0, 0], [0, 4, 0]], qb:[[0, 0, -1], [0, 0, 1]], phi:[[-1, -1, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ \phi_1^2$, $ M_2$, $ q_1\tilde{q}_1$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ M_1^2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_2^2$, $ M_1\phi_1^2$, $ M_1M_2$, $ \phi_1^4$, $ M_2\phi_1^2$ $\phi_1^2q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$ -3 t^2.35 + t^2.67 + t^3. + 4*t^3.33 + 3*t^4.34 + 4*t^4.66 + t^4.69 + 3*t^4.99 + t^5.02 + 2*t^5.35 + t^5.67 - 3*t^6. + 9*t^6.65 + 3*t^6.68 + 3*t^7.01 + t^7.04 + 3*t^7.34 + t^7.37 + 8*t^7.66 + 2*t^7.69 + 8*t^7.99 + 2*t^8.02 + 5*t^8.32 - 3*t^8.35 + 2*t^8.67 - t^4.34/y - t^6.68/y - t^7.01/y + t^7.66/y + t^7.99/y + t^8.02/y + t^8.35/y + (5*t^8.67)/y - t^4.34*y - t^6.68*y - t^7.01*y + t^7.66*y + t^7.99*y + t^8.02*y + t^8.35*y + 5*t^8.67*y t^2.35/(g1^4*g2^4) + t^2.67/(g1^2*g2^2) + t^3. + (g1^4*t^3.33)/g3 + (g2^4*t^3.33)/g3 + g1^4*g3*t^3.33 + g2^4*g3*t^3.33 + t^4.34/(g1*g2) + t^4.34/(g1*g2*g3^2) + (g3^2*t^4.34)/(g1*g2) + (g1^3*t^4.66)/(g2*g3) + (g2^3*t^4.66)/(g1*g3) + (g1^3*g3*t^4.66)/g2 + (g2^3*g3*t^4.66)/g1 + t^4.69/(g1^8*g2^8) + (g1^7*t^4.99)/g2 + g1^3*g2^3*t^4.99 + (g2^7*t^4.99)/g1 + t^5.02/(g1^6*g2^6) + (2*t^5.35)/(g1^4*g2^4) + t^5.67/(g1^2*g2^2) - 3*t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 - t^6./g3^2 + (g1^2*t^6.)/(g2^2*g3) + (g2^2*t^6.)/(g1^2*g3) + (g1^2*g3*t^6.)/g2^2 + (g2^2*g3*t^6.)/g1^2 - g3^2*t^6. + g1^8*t^6.65 + g1^4*g2^4*t^6.65 + g2^8*t^6.65 + (g1^8*t^6.65)/g3^2 + (g1^4*g2^4*t^6.65)/g3^2 + (g2^8*t^6.65)/g3^2 + g1^8*g3^2*t^6.65 + g1^4*g2^4*g3^2*t^6.65 + g2^8*g3^2*t^6.65 + t^6.68/(g1^5*g2^5) + t^6.68/(g1^5*g2^5*g3^2) + (g3^2*t^6.68)/(g1^5*g2^5) + t^7.01/(g1^3*g2^3) + t^7.01/(g1^3*g2^3*g3^2) + (g3^2*t^7.01)/(g1^3*g2^3) + t^7.04/(g1^12*g2^12) - t^7.34/(g1*g2) + (g1*t^7.34)/(g2^3*g3) + (g2*t^7.34)/(g1^3*g3) + (g1*g3*t^7.34)/g2^3 + (g2*g3*t^7.34)/g1^3 + t^7.37/(g1^10*g2^10) + (g1^5*t^7.66)/g2^3 + (g2^5*t^7.66)/g1^3 + (g1^3*t^7.66)/(g2*g3^3) + (g2^3*t^7.66)/(g1*g3^3) - (g1*g2*t^7.66)/g3^2 + (g1^3*t^7.66)/(g2*g3) + (g2^3*t^7.66)/(g1*g3) + (g1^3*g3*t^7.66)/g2 + (g2^3*g3*t^7.66)/g1 - g1*g2*g3^2*t^7.66 + (g1^3*g3^3*t^7.66)/g2 + (g2^3*g3^3*t^7.66)/g1 + (2*t^7.69)/(g1^8*g2^8) + (2*g1^7*t^7.99)/g2 + 2*g1^3*g2^3*t^7.99 + (2*g2^7*t^7.99)/g1 + (g1^7*t^7.99)/(g2*g3^2) + (g1^3*g2^3*t^7.99)/g3^2 + (g2^7*t^7.99)/(g1*g3^2) - (g1^5*g2*t^7.99)/g3 - (g1*g2^5*t^7.99)/g3 - g1^5*g2*g3*t^7.99 - g1*g2^5*g3*t^7.99 + (g1^7*g3^2*t^7.99)/g2 + g1^3*g2^3*g3^2*t^7.99 + (g2^7*g3^2*t^7.99)/g1 + (2*t^8.02)/(g1^6*g2^6) - g1^9*g2*t^8.32 - g1^5*g2^5*t^8.32 - g1*g2^9*t^8.32 + (g1^11*t^8.32)/(g2*g3) + (g1^7*g2^3*t^8.32)/g3 + (g1^3*g2^7*t^8.32)/g3 + (g2^11*t^8.32)/(g1*g3) + (g1^11*g3*t^8.32)/g2 + g1^7*g2^3*g3*t^8.32 + g1^3*g2^7*g3*t^8.32 + (g2^11*g3*t^8.32)/g1 - t^8.35/(g1^4*g2^4) - t^8.35/(g1^4*g2^4*g3^2) - (g3^2*t^8.35)/(g1^4*g2^4) - (g1^2*t^8.67)/g2^6 - (2*t^8.67)/(g1^2*g2^2) - (g2^2*t^8.67)/g1^6 + t^8.67/(g1^2*g2^2*g3^4) + t^8.67/(g1^4*g3) + t^8.67/(g2^4*g3) + (g3*t^8.67)/g1^4 + (g3*t^8.67)/g2^4 + (g3^4*t^8.67)/(g1^2*g2^2) - t^4.34/(g1*g2*y) - t^6.68/(g1^5*g2^5*y) - t^7.01/(g1^3*g2^3*y) + (g1*g2*t^7.66)/y + (g1^3*g2^3*t^7.99)/y + t^8.02/(g1^6*g2^6*y) + t^8.35/(g1^4*g2^4*y) + t^8.67/(g1^2*g2^2*y) + t^8.67/(g1^4*g3*y) + t^8.67/(g2^4*g3*y) + (g3*t^8.67)/(g1^4*y) + (g3*t^8.67)/(g2^4*y) - (t^4.34*y)/(g1*g2) - (t^6.68*y)/(g1^5*g2^5) - (t^7.01*y)/(g1^3*g2^3) + g1*g2*t^7.66*y + g1^3*g2^3*t^7.99*y + (t^8.02*y)/(g1^6*g2^6) + (t^8.35*y)/(g1^4*g2^4) + (t^8.67*y)/(g1^2*g2^2) + (t^8.67*y)/(g1^4*g3) + (t^8.67*y)/(g2^4*g3) + (g3*t^8.67*y)/g1^4 + (g3*t^8.67*y)/g2^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ 0.7382 0.8885 0.8308 [X:[], M:[0.8108, 0.8108], q:[0.5946, 0.5946], qb:[0.5946, 0.5946], phi:[0.4054]] 3*t^2.43 + 4*t^3.57 + 10*t^4.78 + 6*t^4.86 - 4*t^6. - t^4.22/y - t^4.22*y detail