Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
318 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ 0.7184 0.8712 0.8246 [M:[0.891, 1.109, 1.0, 0.7821], q:[0.5, 0.609], qb:[0.5, 0.609], phi:[0.4455]] [M:[[-2, -2], [2, 2], [0, 0], [-4, -4]], q:[[-2, 0], [4, 2]], qb:[[2, 0], [0, 2]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{1}$, ${ }M_{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{4}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{4}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$ ${}M_{1}M_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$ -3 t^2.346 + t^2.673 + t^3. + 4*t^3.327 + 3*t^4.337 + 4*t^4.663 + t^4.693 + 3*t^4.99 + t^5.019 + 2*t^5.346 + t^5.673 - 3*t^6. + 9*t^6.654 + 3*t^6.683 + 3*t^7.01 + t^7.039 + 3*t^7.337 + t^7.366 + 8*t^7.663 + 2*t^7.693 + 8*t^7.99 + 2*t^8.019 + 5*t^8.317 - 3*t^8.346 + 2*t^8.673 - t^4.337/y - t^6.683/y - t^7.01/y + t^7.663/y + t^7.99/y + t^8.019/y + t^8.346/y + (5*t^8.673)/y - t^4.337*y - t^6.683*y - t^7.01*y + t^7.663*y + t^7.99*y + t^8.019*y + t^8.346*y + 5*t^8.673*y t^2.346/(g1^4*g2^4) + t^2.673/(g1^2*g2^2) + t^3. + (g2^2*t^3.327)/g1^2 + 2*g1^2*g2^2*t^3.327 + g1^6*g2^2*t^3.327 + t^4.337/(g1^5*g2) + t^4.337/(g1*g2) + (g1^3*t^4.337)/g2 + (g2*t^4.663)/g1^3 + 2*g1*g2*t^4.663 + g1^5*g2*t^4.663 + t^4.693/(g1^8*g2^8) + (g2^3*t^4.99)/g1 + g1^3*g2^3*t^4.99 + g1^7*g2^3*t^4.99 + t^5.019/(g1^6*g2^6) + (2*t^5.346)/(g1^4*g2^4) + t^5.673/(g1^2*g2^2) - t^6. - t^6./g1^4 - g1^4*t^6. + 2*g2^4*t^6.654 + (g2^4*t^6.654)/g1^4 + 3*g1^4*g2^4*t^6.654 + 2*g1^8*g2^4*t^6.654 + g1^12*g2^4*t^6.654 + t^6.683/(g1^9*g2^5) + t^6.683/(g1^5*g2^5) + t^6.683/(g1*g2^5) + t^7.01/(g1^7*g2^3) + t^7.01/(g1^3*g2^3) + (g1*t^7.01)/g2^3 + t^7.039/(g1^12*g2^12) + t^7.337/(g1^5*g2) + t^7.337/(g1*g2) + (g1^3*t^7.337)/g2 + t^7.366/(g1^10*g2^10) + (g2*t^7.663)/g1^7 + (2*g2*t^7.663)/g1^3 + 2*g1*g2*t^7.663 + 2*g1^5*g2*t^7.663 + g1^9*g2*t^7.663 + (2*t^7.693)/(g1^8*g2^8) + (g2^3*t^7.99)/g1^5 + (2*g2^3*t^7.99)/g1 + 2*g1^3*g2^3*t^7.99 + 2*g1^7*g2^3*t^7.99 + g1^11*g2^3*t^7.99 + (2*t^8.019)/(g1^6*g2^6) + (g2^5*t^8.317)/g1^3 + g1*g2^5*t^8.317 + g1^5*g2^5*t^8.317 + g1^9*g2^5*t^8.317 + g1^13*g2^5*t^8.317 - t^8.346/g2^4 - t^8.346/(g1^8*g2^4) - t^8.346/(g1^4*g2^4) + t^8.673/(g1^10*g2^2) + (g1^6*t^8.673)/g2^2 - t^4.337/(g1*g2*y) - t^6.683/(g1^5*g2^5*y) - t^7.01/(g1^3*g2^3*y) + (g1*g2*t^7.663)/y + (g1^3*g2^3*t^7.99)/y + t^8.019/(g1^6*g2^6*y) + t^8.346/(g1^4*g2^4*y) + t^8.673/(g1^6*g2^2*y) + (3*t^8.673)/(g1^2*g2^2*y) + (g1^2*t^8.673)/(g2^2*y) - (t^4.337*y)/(g1*g2) - (t^6.683*y)/(g1^5*g2^5) - (t^7.01*y)/(g1^3*g2^3) + g1*g2*t^7.663*y + g1^3*g2^3*t^7.99*y + (t^8.019*y)/(g1^6*g2^6) + (t^8.346*y)/(g1^4*g2^4) + (t^8.673*y)/(g1^6*g2^2) + (3*t^8.673*y)/(g1^2*g2^2) + (g1^2*t^8.673*y)/g2^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
496 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{1}M_{5}$ 0.7093 0.857 0.8276 [M:[0.9093, 1.0907, 1.0, 0.8187, 1.0907], q:[0.5, 0.5907], qb:[0.5, 0.5907], phi:[0.4547]] t^2.456 + t^3. + 5*t^3.272 + 3*t^4.364 + 4*t^4.636 + 3*t^4.908 + t^4.912 + t^5.456 + t^5.728 - 7*t^6. - t^4.364/y - t^4.364*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
203 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ 0.7382 0.8885 0.8308 [M:[0.8108, 1.1892, 0.8108, 0.8108], q:[0.5946, 0.5946], qb:[0.5946, 0.5946], phi:[0.4054]] 3*t^2.432 + 4*t^3.568 + 10*t^4.784 + 6*t^4.865 - 4*t^6. - t^4.216/y - t^4.216*y detail