Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
733 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{1}q_{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ 0.7372 0.9296 0.793 [M:[1.0, 0.9207, 1.0, 0.7483, 0.669, 0.669], q:[0.7914, 0.5397], qb:[0.4603, 0.5397], phi:[0.4172]] [M:[[7, 1], [14, 0], [-7, -1], [-6, 0], [15, 1], [1, -1]], q:[[-1, 0], [-14, -1]], qb:[[7, 0], [0, 1]], phi:[[2, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{5}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{6}^{2}$, ${ }M_{5}^{2}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{4}M_{5}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{2}M_{5}$, ${ }M_{2}M_{4}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{6}$, ${ }\phi_{1}^{4}$, ${ }M_{3}M_{6}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}^{2}$ ${}M_{1}^{2}$, ${ }M_{3}^{2}$ -2 2*t^2.007 + t^2.245 + t^2.503 + t^2.762 + 2*t^3. + 4*t^4.014 + 4*t^4.252 + 4*t^4.49 + 2*t^4.51 + t^4.748 + 2*t^4.769 + 6*t^5.007 + 2*t^5.245 + t^5.265 + 2*t^5.503 + t^5.524 - 2*t^6. + 6*t^6.021 - 2*t^6.238 + 7*t^6.259 + 8*t^6.497 + 4*t^6.517 + 4*t^6.735 + 2*t^6.755 + 4*t^6.776 + 2*t^6.993 + 12*t^7.014 + 8*t^7.252 + 2*t^7.272 + 4*t^7.49 + 5*t^7.51 + 2*t^7.531 + 2*t^7.769 - 3*t^7.986 - 4*t^8.007 + 10*t^8.028 - 10*t^8.245 + 12*t^8.265 + t^8.286 - 4*t^8.483 + 12*t^8.503 + 6*t^8.524 + 8*t^8.741 + 6*t^8.783 + 9*t^8.979 - t^4.252/y - (2*t^6.259)/y - t^6.497/y - t^6.755/y + (2*t^7.252)/y + t^7.49/y + (2*t^7.51)/y + (2*t^7.748)/y + (2*t^7.769)/y + (6*t^8.007)/y + (4*t^8.245)/y - (2*t^8.265)/y - t^8.741/y - t^4.252*y - 2*t^6.259*y - t^6.497*y - t^6.755*y + 2*t^7.252*y + t^7.49*y + 2*t^7.51*y + 2*t^7.748*y + 2*t^7.769*y + 6*t^8.007*y + 4*t^8.245*y - 2*t^8.265*y - t^8.741*y (g1*t^2.007)/g2 + g1^15*g2*t^2.007 + t^2.245/g1^6 + g1^4*t^2.503 + g1^14*t^2.762 + t^3./(g1^7*g2) + g1^7*g2*t^3. + 2*g1^16*t^4.014 + (g1^2*t^4.014)/g2^2 + g1^30*g2^2*t^4.014 + (2*t^4.252)/(g1^5*g2) + 2*g1^9*g2*t^4.252 + (2*t^4.49)/g1^12 + t^4.49/(g1^26*g2^2) + g1^2*g2^2*t^4.49 + (g1^5*t^4.51)/g2 + g1^19*g2*t^4.51 + t^4.748/g1^2 + (g1^15*t^4.769)/g2 + g1^29*g2*t^4.769 + 4*g1^8*t^5.007 + t^5.007/(g1^6*g2^2) + g1^22*g2^2*t^5.007 + t^5.245/(g1^13*g2) + g1*g2*t^5.245 + g1^18*t^5.265 + t^5.503/(g1^3*g2) + g1^11*g2*t^5.503 + g1^28*t^5.524 - 2*t^6. + (g1^3*t^6.021)/g2^3 + (2*g1^17*t^6.021)/g2 + 2*g1^31*g2*t^6.021 + g1^45*g2^3*t^6.021 - t^6.238/(g1^21*g2) - (g2*t^6.238)/g1^7 + 3*g1^10*t^6.259 + (2*t^6.259)/(g1^4*g2^2) + 2*g1^24*g2^2*t^6.259 + t^6.497/(g1^25*g2^3) + (3*t^6.497)/(g1^11*g2) + 3*g1^3*g2*t^6.497 + g1^17*g2^3*t^6.497 + 2*g1^20*t^6.517 + (g1^6*t^6.517)/g2^2 + g1^34*g2^2*t^6.517 + (2*t^6.735)/g1^18 + t^6.735/(g1^32*g2^2) + (g2^2*t^6.735)/g1^4 + t^6.755/(g1*g2) + g1^13*g2*t^6.755 + 2*g1^30*t^6.776 + (g1^16*t^6.776)/g2^2 + g1^44*g2^2*t^6.776 + t^6.993/(g1^22*g2^2) + g1^6*g2^2*t^6.993 + t^7.014/(g1^5*g2^3) + (5*g1^9*t^7.014)/g2 + 5*g1^23*g2*t^7.014 + g1^37*g2^3*t^7.014 + 4*g1^2*t^7.252 + (2*t^7.252)/(g1^12*g2^2) + 2*g1^16*g2^2*t^7.252 + (g1^19*t^7.272)/g2 + g1^33*g2*t^7.272 + t^7.49/(g1^33*g2^3) + t^7.49/(g1^19*g2) + (g2*t^7.49)/g1^5 + g1^9*g2^3*t^7.49 + 3*g1^12*t^7.51 + t^7.51/(g1^2*g2^2) + g1^26*g2^2*t^7.51 + (g1^29*t^7.531)/g2 + g1^43*g2*t^7.531 + 2*g1^22*t^7.769 - t^7.986/g1^16 - t^7.986/(g1^30*g2^2) - (g2^2*t^7.986)/g1^2 - (2*g1*t^8.007)/g2 - 2*g1^15*g2*t^8.007 + 4*g1^32*t^8.028 + (g1^4*t^8.028)/g2^4 + (2*g1^18*t^8.028)/g2^2 + 2*g1^46*g2^2*t^8.028 + g1^60*g2^4*t^8.028 - (6*t^8.245)/g1^6 - (2*t^8.245)/(g1^20*g2^2) - 2*g1^8*g2^2*t^8.245 + (2*t^8.265)/(g1^3*g2^3) + (4*g1^11*t^8.265)/g2 + 4*g1^25*g2*t^8.265 + 2*g1^39*g2^3*t^8.265 + g1^42*t^8.286 - (2*t^8.483)/(g1^27*g2) - (2*g2*t^8.483)/g1^13 + 2*g1^4*t^8.503 + t^8.503/(g1^24*g2^4) + (4*t^8.503)/(g1^10*g2^2) + 4*g1^18*g2^2*t^8.503 + g1^32*g2^4*t^8.503 + (g1^7*t^8.524)/g2^3 + (2*g1^21*t^8.524)/g2 + 2*g1^35*g2*t^8.524 + g1^49*g2^3*t^8.524 + (2*t^8.741)/(g1^31*g2^3) + (2*t^8.741)/(g1^17*g2) + (2*g2*t^8.741)/g1^3 + 2*g1^11*g2^3*t^8.741 - 2*g1^14*t^8.762 + t^8.762/g2^2 + g1^28*g2^2*t^8.762 + (g1^17*t^8.783)/g2^3 + (2*g1^31*t^8.783)/g2 + 2*g1^45*g2*t^8.783 + g1^59*g2^3*t^8.783 + (3*t^8.979)/g1^24 + t^8.979/(g1^52*g2^4) + (2*t^8.979)/(g1^38*g2^2) + (2*g2^2*t^8.979)/g1^10 + g1^4*g2^4*t^8.979 - (g1^2*t^4.252)/y - (g1^3*t^6.259)/(g2*y) - (g1^17*g2*t^6.259)/y - t^6.497/(g1^4*y) - (g1^6*t^6.755)/y + t^7.252/(g1^5*g2*y) + (g1^9*g2*t^7.252)/y + t^7.49/(g1^12*y) + (g1^5*t^7.51)/(g2*y) + (g1^19*g2*t^7.51)/y + (2*t^7.748)/(g1^2*y) + (g1^15*t^7.769)/(g2*y) + (g1^29*g2*t^7.769)/y + (4*g1^8*t^8.007)/y + t^8.007/(g1^6*g2^2*y) + (g1^22*g2^2*t^8.007)/y + (2*t^8.245)/(g1^13*g2*y) + (2*g1*g2*t^8.245)/y - (g1^4*t^8.265)/(g2^2*y) - (g1^32*g2^2*t^8.265)/y - t^8.741/(g1^10*y) - g1^2*t^4.252*y - (g1^3*t^6.259*y)/g2 - g1^17*g2*t^6.259*y - (t^6.497*y)/g1^4 - g1^6*t^6.755*y + (t^7.252*y)/(g1^5*g2) + g1^9*g2*t^7.252*y + (t^7.49*y)/g1^12 + (g1^5*t^7.51*y)/g2 + g1^19*g2*t^7.51*y + (2*t^7.748*y)/g1^2 + (g1^15*t^7.769*y)/g2 + g1^29*g2*t^7.769*y + 4*g1^8*t^8.007*y + (t^8.007*y)/(g1^6*g2^2) + g1^22*g2^2*t^8.007*y + (2*t^8.245*y)/(g1^13*g2) + 2*g1*g2*t^8.245*y - (g1^4*t^8.265*y)/g2^2 - g1^32*g2^2*t^8.265*y - (t^8.741*y)/g1^10


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
438 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{1}q_{2}$ 0.7163 0.8881 0.8066 [M:[0.9996, 0.9212, 1.0004, 0.7481, 0.6689], q:[0.7913, 0.5398], qb:[0.4606, 0.539], phi:[0.4173]] t^2.007 + t^2.244 + t^2.504 + t^2.764 + t^2.999 + t^3.001 + t^3.991 + t^4.013 + t^4.016 + 2*t^4.251 + t^4.253 + t^4.486 + 2*t^4.488 + t^4.491 + t^4.51 + t^4.748 + t^4.77 + t^5.005 + 3*t^5.008 + t^5.243 + t^5.245 + t^5.267 + t^5.503 + t^5.505 + t^5.527 + t^5.998 - 2*t^6. - t^4.252/y - t^4.252*y detail