Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46973 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }\phi_{1}q_{2}^{2}$ 0.7372 0.9296 0.793 [M:[0.669, 0.9207, 1.0, 0.7483, 1.0, 0.669], q:[0.5397, 0.7914], qb:[0.5397, 0.4603], phi:[0.4172]] [M:[[1, 15], [0, 14], [-1, -7], [0, -6], [1, 7], [-1, 1]], q:[[-1, -14], [0, -1]], qb:[[1, 0], [0, 7]], phi:[[0, 2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{1}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{3}$, ${ }M_{5}$, ${ }M_{6}^{2}$, ${ }M_{1}M_{6}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{6}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{4}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}M_{5}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{2}^{2}$ ${}M_{3}^{2}$, ${ }M_{5}^{2}$ -2 2*t^2.007 + t^2.245 + t^2.503 + t^2.762 + 2*t^3. + 4*t^4.014 + 4*t^4.252 + 4*t^4.49 + 2*t^4.51 + t^4.748 + 2*t^4.769 + 6*t^5.007 + 2*t^5.245 + t^5.265 + 2*t^5.503 + t^5.524 - 2*t^6. + 6*t^6.021 - 2*t^6.238 + 7*t^6.259 + 8*t^6.497 + 4*t^6.517 + 4*t^6.735 + 2*t^6.755 + 4*t^6.776 + 2*t^6.993 + 12*t^7.014 + 8*t^7.252 + 2*t^7.272 + 4*t^7.49 + 5*t^7.51 + 2*t^7.531 + 2*t^7.769 - 3*t^7.986 - 4*t^8.007 + 10*t^8.028 - 10*t^8.245 + 12*t^8.265 + t^8.286 - 4*t^8.483 + 12*t^8.503 + 6*t^8.524 + 8*t^8.741 + 6*t^8.783 + 9*t^8.979 - t^4.252/y - (2*t^6.259)/y - t^6.497/y - t^6.755/y + (2*t^7.252)/y + t^7.49/y + (2*t^7.51)/y + (2*t^7.748)/y + (2*t^7.769)/y + (6*t^8.007)/y + (4*t^8.245)/y - (2*t^8.265)/y - t^8.741/y - t^4.252*y - 2*t^6.259*y - t^6.497*y - t^6.755*y + 2*t^7.252*y + t^7.49*y + 2*t^7.51*y + 2*t^7.748*y + 2*t^7.769*y + 6*t^8.007*y + 4*t^8.245*y - 2*t^8.265*y - t^8.741*y (g2*t^2.007)/g1 + g1*g2^15*t^2.007 + t^2.245/g2^6 + g2^4*t^2.503 + g2^14*t^2.762 + t^3./(g1*g2^7) + g1*g2^7*t^3. + (g2^2*t^4.014)/g1^2 + 2*g2^16*t^4.014 + g1^2*g2^30*t^4.014 + (2*t^4.252)/(g1*g2^5) + 2*g1*g2^9*t^4.252 + t^4.49/(g1^2*g2^26) + (2*t^4.49)/g2^12 + g1^2*g2^2*t^4.49 + (g2^5*t^4.51)/g1 + g1*g2^19*t^4.51 + t^4.748/g2^2 + (g2^15*t^4.769)/g1 + g1*g2^29*t^4.769 + t^5.007/(g1^2*g2^6) + 4*g2^8*t^5.007 + g1^2*g2^22*t^5.007 + t^5.245/(g1*g2^13) + g1*g2*t^5.245 + g2^18*t^5.265 + t^5.503/(g1*g2^3) + g1*g2^11*t^5.503 + g2^28*t^5.524 - 2*t^6. + (g2^3*t^6.021)/g1^3 + (2*g2^17*t^6.021)/g1 + 2*g1*g2^31*t^6.021 + g1^3*g2^45*t^6.021 - t^6.238/(g1*g2^21) - (g1*t^6.238)/g2^7 + (2*t^6.259)/(g1^2*g2^4) + 3*g2^10*t^6.259 + 2*g1^2*g2^24*t^6.259 + t^6.497/(g1^3*g2^25) + (3*t^6.497)/(g1*g2^11) + 3*g1*g2^3*t^6.497 + g1^3*g2^17*t^6.497 + (g2^6*t^6.517)/g1^2 + 2*g2^20*t^6.517 + g1^2*g2^34*t^6.517 + t^6.735/(g1^2*g2^32) + (2*t^6.735)/g2^18 + (g1^2*t^6.735)/g2^4 + t^6.755/(g1*g2) + g1*g2^13*t^6.755 + (g2^16*t^6.776)/g1^2 + 2*g2^30*t^6.776 + g1^2*g2^44*t^6.776 + t^6.993/(g1^2*g2^22) + g1^2*g2^6*t^6.993 + t^7.014/(g1^3*g2^5) + (5*g2^9*t^7.014)/g1 + 5*g1*g2^23*t^7.014 + g1^3*g2^37*t^7.014 + (2*t^7.252)/(g1^2*g2^12) + 4*g2^2*t^7.252 + 2*g1^2*g2^16*t^7.252 + (g2^19*t^7.272)/g1 + g1*g2^33*t^7.272 + t^7.49/(g1^3*g2^33) + t^7.49/(g1*g2^19) + (g1*t^7.49)/g2^5 + g1^3*g2^9*t^7.49 + t^7.51/(g1^2*g2^2) + 3*g2^12*t^7.51 + g1^2*g2^26*t^7.51 + (g2^29*t^7.531)/g1 + g1*g2^43*t^7.531 + 2*g2^22*t^7.769 - t^7.986/(g1^2*g2^30) - t^7.986/g2^16 - (g1^2*t^7.986)/g2^2 - (2*g2*t^8.007)/g1 - 2*g1*g2^15*t^8.007 + (g2^4*t^8.028)/g1^4 + (2*g2^18*t^8.028)/g1^2 + 4*g2^32*t^8.028 + 2*g1^2*g2^46*t^8.028 + g1^4*g2^60*t^8.028 - (2*t^8.245)/(g1^2*g2^20) - (6*t^8.245)/g2^6 - 2*g1^2*g2^8*t^8.245 + (2*t^8.265)/(g1^3*g2^3) + (4*g2^11*t^8.265)/g1 + 4*g1*g2^25*t^8.265 + 2*g1^3*g2^39*t^8.265 + g2^42*t^8.286 - (2*t^8.483)/(g1*g2^27) - (2*g1*t^8.483)/g2^13 + t^8.503/(g1^4*g2^24) + (4*t^8.503)/(g1^2*g2^10) + 2*g2^4*t^8.503 + 4*g1^2*g2^18*t^8.503 + g1^4*g2^32*t^8.503 + (g2^7*t^8.524)/g1^3 + (2*g2^21*t^8.524)/g1 + 2*g1*g2^35*t^8.524 + g1^3*g2^49*t^8.524 + (2*t^8.741)/(g1^3*g2^31) + (2*t^8.741)/(g1*g2^17) + (2*g1*t^8.741)/g2^3 + 2*g1^3*g2^11*t^8.741 + t^8.762/g1^2 - 2*g2^14*t^8.762 + g1^2*g2^28*t^8.762 + (g2^17*t^8.783)/g1^3 + (2*g2^31*t^8.783)/g1 + 2*g1*g2^45*t^8.783 + g1^3*g2^59*t^8.783 + t^8.979/(g1^4*g2^52) + (2*t^8.979)/(g1^2*g2^38) + (3*t^8.979)/g2^24 + (2*g1^2*t^8.979)/g2^10 + g1^4*g2^4*t^8.979 - (g2^2*t^4.252)/y - (g2^3*t^6.259)/(g1*y) - (g1*g2^17*t^6.259)/y - t^6.497/(g2^4*y) - (g2^6*t^6.755)/y + t^7.252/(g1*g2^5*y) + (g1*g2^9*t^7.252)/y + t^7.49/(g2^12*y) + (g2^5*t^7.51)/(g1*y) + (g1*g2^19*t^7.51)/y + (2*t^7.748)/(g2^2*y) + (g2^15*t^7.769)/(g1*y) + (g1*g2^29*t^7.769)/y + t^8.007/(g1^2*g2^6*y) + (4*g2^8*t^8.007)/y + (g1^2*g2^22*t^8.007)/y + (2*t^8.245)/(g1*g2^13*y) + (2*g1*g2*t^8.245)/y - (g2^4*t^8.265)/(g1^2*y) - (g1^2*g2^32*t^8.265)/y - t^8.741/(g2^10*y) - g2^2*t^4.252*y - (g2^3*t^6.259*y)/g1 - g1*g2^17*t^6.259*y - (t^6.497*y)/g2^4 - g2^6*t^6.755*y + (t^7.252*y)/(g1*g2^5) + g1*g2^9*t^7.252*y + (t^7.49*y)/g2^12 + (g2^5*t^7.51*y)/g1 + g1*g2^19*t^7.51*y + (2*t^7.748*y)/g2^2 + (g2^15*t^7.769*y)/g1 + g1*g2^29*t^7.769*y + (t^8.007*y)/(g1^2*g2^6) + 4*g2^8*t^8.007*y + g1^2*g2^22*t^8.007*y + (2*t^8.245*y)/(g1*g2^13) + 2*g1*g2*t^8.245*y - (g2^4*t^8.265*y)/g1^2 - g1^2*g2^32*t^8.265*y - (t^8.741*y)/g2^10


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46406 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ 0.7478 0.9314 0.8029 [M:[0.7502, 0.889, 1.0, 0.8612, 1.0, 0.7502], q:[0.5555, 0.6943], qb:[0.5555, 0.4445], phi:[0.4375]] 2*t^2.251 + t^2.584 + t^2.625 + t^2.667 + 2*t^3. + t^3.98 + 2*t^4.313 + 3*t^4.501 + 3*t^4.646 + t^4.729 + 2*t^4.834 + 2*t^4.876 + 2*t^4.917 + 2*t^5.062 + t^5.167 + t^5.209 + 5*t^5.251 + t^5.292 + t^5.334 + t^5.478 + 2*t^5.625 - 3*t^6. - t^4.313/y - t^4.313*y detail