Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
6715 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{6}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{8}q_{1}\tilde{q}_{1}$ + ${ }M_{9}q_{1}\tilde{q}_{2}$ | 0.6803 | 0.9165 | 0.7423 | [M:[0.9615, 1.1156, 0.9615, 0.8844, 0.7018, 0.6733, 0.8844, 0.7789, 0.8559], q:[0.7404, 0.2982], qb:[0.4807, 0.4037], phi:[0.5193]] | [M:[[4], [-12], [4], [12], [5], [-18], [12], [-3], [-11]], q:[[1], [-5]], qb:[[2], [10]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{6}$, ${ }M_{5}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{8}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{9}$, ${ }M_{4}$, ${ }M_{7}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{6}M_{8}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{5}M_{8}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{8}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}M_{9}$, ${ }M_{4}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{8}^{2}$, ${ }M_{5}M_{9}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{8}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{9}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}M_{7}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{7}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{8}M_{9}$, ${ }M_{9}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{4}M_{8}$, ${ }M_{7}M_{8}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{9}^{2}$, ${ }M_{1}M_{8}$, ${ }M_{3}M_{8}$, ${ }M_{4}M_{9}$, ${ }M_{7}M_{9}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{1}M_{9}$, ${ }M_{3}M_{9}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{7}$, ${ }M_{3}M_{7}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ | ${}M_{8}\phi_{1}q_{2}\tilde{q}_{2}$ | -2 | t^2.02 + 2*t^2.106 + 2*t^2.337 + t^2.568 + 2*t^2.653 + 2*t^2.884 + t^3.663 + t^4.04 + 2*t^4.126 + 4*t^4.211 + 2*t^4.357 + 5*t^4.442 + t^4.588 + 7*t^4.673 + 4*t^4.759 + 4*t^4.904 + 8*t^4.99 + t^5.136 + 6*t^5.221 + 3*t^5.307 + t^5.452 + 4*t^5.538 + 3*t^5.769 - 2*t^6. + t^6.06 + 2*t^6.146 + 2*t^6.231 + 6*t^6.317 + 2*t^6.377 + 5*t^6.462 + 8*t^6.548 + t^6.608 + 7*t^6.693 + 12*t^6.779 + 7*t^6.864 + 4*t^6.925 + 14*t^7.01 + 16*t^7.096 + t^7.156 + 10*t^7.241 + 18*t^7.327 + 6*t^7.412 + 3*t^7.472 + 11*t^7.558 + 13*t^7.643 + t^7.703 + 3*t^7.789 + 13*t^7.874 + 4*t^7.96 - 3*t^8.02 + t^8.08 - 2*t^8.106 + 2*t^8.166 + 6*t^8.191 + t^8.251 - 6*t^8.337 + 2*t^8.397 + 10*t^8.422 + 5*t^8.482 - 2*t^8.568 + t^8.628 + 4*t^8.653 + 7*t^8.713 + 10*t^8.799 + 6*t^8.884 + 4*t^8.945 + 9*t^8.97 - t^4.558/y - t^6.578/y - t^6.663/y - t^6.894/y + t^7.126/y + (2*t^7.357)/y + (3*t^7.442)/y + t^7.588/y + (6*t^7.673)/y + (4*t^7.759)/y + (5*t^7.904)/y + (9*t^7.99)/y + (7*t^8.221)/y + t^8.307/y + (3*t^8.452)/y + (5*t^8.538)/y - t^8.598/y + (2*t^8.769)/y - t^8.914/y - t^4.558*y - t^6.578*y - t^6.663*y - t^6.894*y + t^7.126*y + 2*t^7.357*y + 3*t^7.442*y + t^7.588*y + 6*t^7.673*y + 4*t^7.759*y + 5*t^7.904*y + 9*t^7.99*y + 7*t^8.221*y + t^8.307*y + 3*t^8.452*y + 5*t^8.538*y - t^8.598*y + 2*t^8.769*y - t^8.914*y | t^2.02/g1^18 + 2*g1^5*t^2.106 + (2*t^2.337)/g1^3 + t^2.568/g1^11 + 2*g1^12*t^2.653 + 2*g1^4*t^2.884 + g1^3*t^3.663 + t^4.04/g1^36 + (2*t^4.126)/g1^13 + 4*g1^10*t^4.211 + (2*t^4.357)/g1^21 + 5*g1^2*t^4.442 + t^4.588/g1^29 + (7*t^4.673)/g1^6 + 4*g1^17*t^4.759 + (4*t^4.904)/g1^14 + 8*g1^9*t^4.99 + t^5.136/g1^22 + 6*g1*t^5.221 + 3*g1^24*t^5.307 + t^5.452/g1^7 + 4*g1^16*t^5.538 + 3*g1^8*t^5.769 - 2*t^6. + t^6.06/g1^54 + (2*t^6.146)/g1^31 + (2*t^6.231)/g1^8 + 6*g1^15*t^6.317 + (2*t^6.377)/g1^39 + (5*t^6.462)/g1^16 + 8*g1^7*t^6.548 + t^6.608/g1^47 + (7*t^6.693)/g1^24 + (12*t^6.779)/g1 + 7*g1^22*t^6.864 + (4*t^6.925)/g1^32 + (14*t^7.01)/g1^9 + 16*g1^14*t^7.096 + t^7.156/g1^40 + (10*t^7.241)/g1^17 + 18*g1^6*t^7.327 + 6*g1^29*t^7.412 + (3*t^7.472)/g1^25 + (11*t^7.558)/g1^2 + 13*g1^21*t^7.643 + t^7.703/g1^33 + (3*t^7.789)/g1^10 + 13*g1^13*t^7.874 + 4*g1^36*t^7.96 - (3*t^8.02)/g1^18 + t^8.08/g1^72 - 2*g1^5*t^8.106 + (2*t^8.166)/g1^49 + 6*g1^28*t^8.191 + t^8.251/g1^26 - (6*t^8.337)/g1^3 + (2*t^8.397)/g1^57 + 10*g1^20*t^8.422 + (5*t^8.482)/g1^34 - (2*t^8.568)/g1^11 + t^8.628/g1^65 + 4*g1^12*t^8.653 + (7*t^8.713)/g1^42 + (10*t^8.799)/g1^19 + 6*g1^4*t^8.884 + (4*t^8.945)/g1^50 + 9*g1^27*t^8.97 - t^4.558/(g1^2*y) - t^6.578/(g1^20*y) - (g1^3*t^6.663)/y - t^6.894/(g1^5*y) + t^7.126/(g1^13*y) + (2*t^7.357)/(g1^21*y) + (3*g1^2*t^7.442)/y + t^7.588/(g1^29*y) + (6*t^7.673)/(g1^6*y) + (4*g1^17*t^7.759)/y + (5*t^7.904)/(g1^14*y) + (9*g1^9*t^7.99)/y + (7*g1*t^8.221)/y + (g1^24*t^8.307)/y + (3*t^8.452)/(g1^7*y) + (5*g1^16*t^8.538)/y - t^8.598/(g1^38*y) + (2*g1^8*t^8.769)/y - t^8.914/(g1^23*y) - (t^4.558*y)/g1^2 - (t^6.578*y)/g1^20 - g1^3*t^6.663*y - (t^6.894*y)/g1^5 + (t^7.126*y)/g1^13 + (2*t^7.357*y)/g1^21 + 3*g1^2*t^7.442*y + (t^7.588*y)/g1^29 + (6*t^7.673*y)/g1^6 + 4*g1^17*t^7.759*y + (5*t^7.904*y)/g1^14 + 9*g1^9*t^7.99*y + 7*g1*t^8.221*y + g1^24*t^8.307*y + (3*t^8.452*y)/g1^7 + 5*g1^16*t^8.538*y - (t^8.598*y)/g1^38 + 2*g1^8*t^8.769*y - (t^8.914*y)/g1^23 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
5153 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{6}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{8}q_{1}\tilde{q}_{1}$ | 0.6684 | 0.897 | 0.7451 | [M:[0.9548, 1.1357, 0.9548, 0.8643, 0.6935, 0.7036, 0.8643, 0.7839], q:[0.7387, 0.3065], qb:[0.4774, 0.3869], phi:[0.5226]] | 2*t^2.08 + t^2.111 + 2*t^2.352 + 2*t^2.593 + 2*t^2.864 + t^3.377 + t^3.648 + 4*t^4.161 + 2*t^4.191 + t^4.221 + 5*t^4.432 + 2*t^4.462 + 4*t^4.673 + 5*t^4.704 + 8*t^4.945 + 2*t^4.975 + 3*t^5.186 + 4*t^5.216 + 6*t^5.457 + 5*t^5.729 + 2*t^5.97 - 2*t^6. - t^4.568/y - t^4.568*y | detail |