Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5153 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ q_1q_2\tilde{q}_1^2$ + $ M_6\phi_1\tilde{q}_2^2$ + $ M_7\phi_1q_2^2$ + $ M_8q_1\tilde{q}_1$ 0.6684 0.897 0.7451 [X:[], M:[0.9548, 1.1357, 0.9548, 0.8643, 0.6935, 0.7036, 0.8643, 0.7839], q:[0.7387, 0.3065], qb:[0.4774, 0.3869], phi:[0.5226]] [X:[], M:[[4], [-12], [4], [12], [5], [-18], [12], [-3]], q:[[1], [-5]], qb:[[2], [10]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ q_2\tilde{q}_2$, $ M_6$, $ M_8$, $ q_2\tilde{q}_1$, $ M_4$, $ M_7$, $ M_1$, $ M_3$, $ q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ M_5^2$, $ M_5q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_5M_6$, $ M_6q_2\tilde{q}_2$, $ M_6^2$, $ M_5M_8$, $ M_5q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_8q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_6M_8$, $ M_6q_2\tilde{q}_1$, $ M_4M_5$, $ M_5M_7$, $ M_4q_2\tilde{q}_2$, $ M_7q_2\tilde{q}_2$, $ M_4M_6$, $ M_6M_7$, $ M_8^2$, $ \phi_1q_1q_2$, $ M_8q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_1M_5$, $ M_3M_5$, $ M_4M_8$, $ M_7M_8$, $ M_4q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_1M_6$, $ M_3M_6$, $ M_4^2$, $ M_4M_7$, $ M_7^2$, $ M_1M_8$, $ M_3M_8$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_1M_4$, $ M_3M_4$, $ M_1M_7$, $ M_3M_7$, $ M_5q_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ M_1^2$, $ M_1M_3$, $ M_3^2$, $ M_8q_1\tilde{q}_2$, $ M_5\phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_2^2$, $ M_4q_1\tilde{q}_2$, $ M_7q_1\tilde{q}_2$ $M_8\phi_1q_2\tilde{q}_2$ -2 2*t^2.08 + t^2.11 + 2*t^2.35 + 2*t^2.59 + 2*t^2.86 + t^3.38 + t^3.65 + 4*t^4.16 + 2*t^4.19 + t^4.22 + 5*t^4.43 + 2*t^4.46 + 4*t^4.67 + 5*t^4.7 + 8*t^4.94 + 2*t^4.97 + 3*t^5.19 + 4*t^5.22 + 6*t^5.46 + 5*t^5.73 + 2*t^5.97 - 2*t^6. + 8*t^6.24 + t^6.27 + 2*t^6.3 + t^6.33 + 8*t^6.51 + 5*t^6.54 + 2*t^6.57 + 8*t^6.75 + 8*t^6.78 + 5*t^6.81 + 17*t^7.03 + 9*t^7.06 + 2*t^7.09 + 6*t^7.27 + 14*t^7.3 + 3*t^7.33 + 17*t^7.54 + 5*t^7.57 + 4*t^7.78 + 15*t^7.81 - t^7.84 + 10*t^8.05 - t^8.08 - 4*t^8.11 + 18*t^8.32 - 7*t^8.35 + t^8.38 + 2*t^8.41 + t^8.44 + 3*t^8.56 + 8*t^8.59 + 5*t^8.65 + 2*t^8.68 + 15*t^8.83 + 8*t^8.89 + 5*t^8.92 - t^4.57/y - t^6.65/y - t^6.68/y - t^6.92/y + (2*t^7.19)/y + (3*t^7.43)/y + (2*t^7.46)/y + (4*t^7.67)/y + (4*t^7.7)/y + (8*t^7.94)/y + (3*t^7.97)/y + t^8.19/y + (5*t^8.22)/y + (7*t^8.46)/y + (2*t^8.49)/y + (4*t^8.73)/y - t^8.79/y + (2*t^8.97)/y - t^4.57*y - t^6.65*y - t^6.68*y - t^6.92*y + 2*t^7.19*y + 3*t^7.43*y + 2*t^7.46*y + 4*t^7.67*y + 4*t^7.7*y + 8*t^7.94*y + 3*t^7.97*y + t^8.19*y + 5*t^8.22*y + 7*t^8.46*y + 2*t^8.49*y + 4*t^8.73*y - t^8.79*y + 2*t^8.97*y 2*g1^5*t^2.08 + t^2.11/g1^18 + (2*t^2.35)/g1^3 + 2*g1^12*t^2.59 + 2*g1^4*t^2.86 + g1^11*t^3.38 + g1^3*t^3.65 + 4*g1^10*t^4.16 + (2*t^4.19)/g1^13 + t^4.22/g1^36 + 5*g1^2*t^4.43 + (2*t^4.46)/g1^21 + 4*g1^17*t^4.67 + (5*t^4.7)/g1^6 + 8*g1^9*t^4.94 + (2*t^4.97)/g1^14 + 3*g1^24*t^5.19 + 4*g1*t^5.22 + 6*g1^16*t^5.46 + 5*g1^8*t^5.73 + 2*g1^23*t^5.97 - 2*t^6. + 8*g1^15*t^6.24 + t^6.27/g1^8 + (2*t^6.3)/g1^31 + t^6.33/g1^54 + 8*g1^7*t^6.51 + (5*t^6.54)/g1^16 + (2*t^6.57)/g1^39 + 8*g1^22*t^6.75 + (8*t^6.78)/g1 + (5*t^6.81)/g1^24 + 17*g1^14*t^7.03 + (9*t^7.06)/g1^9 + (2*t^7.09)/g1^32 + 6*g1^29*t^7.27 + 14*g1^6*t^7.3 + (3*t^7.33)/g1^17 + 17*g1^21*t^7.54 + (5*t^7.57)/g1^2 + 4*g1^36*t^7.78 + 15*g1^13*t^7.81 - t^7.84/g1^10 + 10*g1^28*t^8.05 - g1^5*t^8.08 - (4*t^8.11)/g1^18 + 18*g1^20*t^8.32 - (7*t^8.35)/g1^3 + t^8.38/g1^26 + (2*t^8.41)/g1^49 + t^8.44/g1^72 + 3*g1^35*t^8.56 + 8*g1^12*t^8.59 + (5*t^8.65)/g1^34 + (2*t^8.68)/g1^57 + 15*g1^27*t^8.83 + (8*t^8.89)/g1^19 + (5*t^8.92)/g1^42 - t^4.57/(g1^2*y) - (g1^3*t^6.65)/y - t^6.68/(g1^20*y) - t^6.92/(g1^5*y) + (2*t^7.19)/(g1^13*y) + (3*g1^2*t^7.43)/y + (2*t^7.46)/(g1^21*y) + (4*g1^17*t^7.67)/y + (4*t^7.7)/(g1^6*y) + (8*g1^9*t^7.94)/y + (3*t^7.97)/(g1^14*y) + (g1^24*t^8.19)/y + (5*g1*t^8.22)/y + (7*g1^16*t^8.46)/y + (2*t^8.49)/(g1^7*y) + (4*g1^8*t^8.73)/y - t^8.79/(g1^38*y) + (2*g1^23*t^8.97)/y - (t^4.57*y)/g1^2 - g1^3*t^6.65*y - (t^6.68*y)/g1^20 - (t^6.92*y)/g1^5 + (2*t^7.19*y)/g1^13 + 3*g1^2*t^7.43*y + (2*t^7.46*y)/g1^21 + 4*g1^17*t^7.67*y + (4*t^7.7*y)/g1^6 + 8*g1^9*t^7.94*y + (3*t^7.97*y)/g1^14 + g1^24*t^8.19*y + 5*g1*t^8.22*y + 7*g1^16*t^8.46*y + (2*t^8.49*y)/g1^7 + 4*g1^8*t^8.73*y - (t^8.79*y)/g1^38 + 2*g1^23*t^8.97*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
6714 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ q_1q_2\tilde{q}_1^2$ + $ M_6\phi_1\tilde{q}_2^2$ + $ M_7\phi_1q_2^2$ + $ M_8q_1\tilde{q}_1$ + $ M_1M_9$ 0.6643 0.8896 0.7467 [X:[], M:[0.9577, 1.1268, 0.9577, 0.8732, 0.6972, 0.6902, 0.8732, 0.7817, 1.0423], q:[0.7394, 0.3028], qb:[0.4789, 0.3943], phi:[0.5211]] t^2.07 + 2*t^2.09 + 2*t^2.35 + 2*t^2.62 + t^2.87 + t^3.13 + t^3.4 + t^3.65 + t^4.14 + 2*t^4.16 + 4*t^4.18 + 2*t^4.42 + 5*t^4.44 + 5*t^4.69 + 4*t^4.71 + t^4.94 + 6*t^4.96 + t^5.2 + 4*t^5.22 + 3*t^5.24 + 2*t^5.47 + 4*t^5.49 + 5*t^5.75 - t^6. - t^4.56/y - t^4.56*y detail
6715 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ q_1q_2\tilde{q}_1^2$ + $ M_6\phi_1\tilde{q}_2^2$ + $ M_7\phi_1q_2^2$ + $ M_8q_1\tilde{q}_1$ + $ M_9q_1\tilde{q}_2$ 0.6803 0.9165 0.7423 [X:[], M:[0.9615, 1.1156, 0.9615, 0.8844, 0.7018, 0.6733, 0.8844, 0.7789, 0.8559], q:[0.7404, 0.2982], qb:[0.4807, 0.4037], phi:[0.5193]] t^2.02 + 2*t^2.11 + 2*t^2.34 + t^2.57 + 2*t^2.65 + 2*t^2.88 + t^3.66 + t^4.04 + 2*t^4.13 + 4*t^4.21 + 2*t^4.36 + 5*t^4.44 + t^4.59 + 7*t^4.67 + 4*t^4.76 + 4*t^4.9 + 8*t^4.99 + t^5.14 + 6*t^5.22 + 3*t^5.31 + t^5.45 + 4*t^5.54 + 3*t^5.77 - 2*t^6. - t^4.56/y - t^4.56*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3496 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ q_1q_2\tilde{q}_1^2$ + $ M_6\phi_1\tilde{q}_2^2$ + $ M_7\phi_1q_2^2$ 0.651 0.8665 0.7513 [X:[], M:[0.9534, 1.1397, 0.9534, 0.8603, 0.6918, 0.7095, 0.8603], q:[0.7384, 0.3082], qb:[0.4767, 0.3836], phi:[0.5233]] 2*t^2.08 + t^2.13 + t^2.35 + 2*t^2.58 + 2*t^2.86 + t^3.37 + 2*t^3.65 + 4*t^4.15 + 2*t^4.2 + t^4.26 + 3*t^4.43 + t^4.48 + 4*t^4.66 + 3*t^4.71 + 6*t^4.94 + 2*t^4.99 + 3*t^5.16 + 2*t^5.22 + 6*t^5.44 + 6*t^5.72 + t^5.77 + 2*t^5.95 - 2*t^6. - t^4.57/y - t^4.57*y detail