Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
6515 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_3M_6$ + $ M_7q_1\tilde{q}_1$ + $ M_4q_1\tilde{q}_2$ + $ M_8\phi_1q_2^2$ + $ M_4M_9$ | 0.6242 | 0.813 | 0.7678 | [X:[], M:[1.0, 0.9931, 1.0137, 0.7551, 0.7483, 0.9863, 0.762, 0.9931, 1.2449], q:[0.7483, 0.2517], qb:[0.4897, 0.4966], phi:[0.5034]] | [X:[], M:[[0], [4], [-8], [-3], [1], [8], [-7], [4], [3]], q:[[1], [-1]], qb:[[6], [2]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$q_2\tilde{q}_1$, $ M_5$, $ q_2\tilde{q}_2$, $ M_7$, $ M_6$, $ M_2$, $ M_8$, $ M_1$, $ M_9$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ M_5q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_5^2$, $ M_5q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ \phi_1q_1q_2$, $ M_7q_2\tilde{q}_1$, $ M_5M_7$, $ M_7q_2\tilde{q}_2$, $ M_7^2$, $ M_6q_2\tilde{q}_1$, $ M_5M_6$, $ M_2q_2\tilde{q}_1$, $ M_8q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ M_2M_5$, $ M_5M_8$, $ \phi_1q_1\tilde{q}_1$, $ M_2q_2\tilde{q}_2$, $ M_8q_2\tilde{q}_2$, $ M_1M_5$, $ M_6M_7$, $ \phi_1q_1\tilde{q}_2$, $ M_2M_7$, $ M_7M_8$, $ M_6^2$, $ M_2M_6$, $ M_6M_8$, $ M_2^2$, $ M_1M_6$, $ M_2M_8$, $ M_8^2$, $ M_9q_2\tilde{q}_1$, $ M_1M_2$, $ M_1M_8$, $ M_5M_9$, $ M_5q_1\tilde{q}_2$, $ M_9q_2\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$ | . | -3 | t^2.22 + 2*t^2.24 + t^2.29 + t^2.96 + 2*t^2.98 + t^3. + 2*t^3.73 + 2*t^4.45 + 3*t^4.47 + 4*t^4.49 + t^4.51 + 2*t^4.53 + t^4.57 + t^5.18 + 4*t^5.2 + 5*t^5.22 + 3*t^5.24 + t^5.27 + t^5.92 + 2*t^5.94 + 5*t^5.96 + 4*t^5.98 - 3*t^6. + 2*t^6.67 + 6*t^6.69 + 7*t^6.71 + 6*t^6.73 + 2*t^6.78 + 2*t^6.82 + t^6.86 + 2*t^7.41 + 6*t^7.43 + 10*t^7.45 + 11*t^7.47 + 2*t^7.49 - t^7.51 + t^7.55 + t^8.14 + 4*t^8.16 + 10*t^8.18 + 10*t^8.2 + 3*t^8.22 - 7*t^8.24 - 3*t^8.27 - 4*t^8.29 + t^8.88 + 5*t^8.9 + 10*t^8.92 + 15*t^8.94 + 8*t^8.96 - t^4.51/y - t^6.76/y - t^6.8/y + (2*t^7.47)/y + t^7.51/y + (3*t^7.53)/y + t^8.18/y + (4*t^8.2)/y + (6*t^8.22)/y + (3*t^8.24)/y + (3*t^8.27)/y + t^8.29/y + (2*t^8.94)/y + (4*t^8.96)/y + (6*t^8.98)/y - t^4.51*y - t^6.76*y - t^6.8*y + 2*t^7.47*y + t^7.51*y + 3*t^7.53*y + t^8.18*y + 4*t^8.2*y + 6*t^8.22*y + 3*t^8.24*y + 3*t^8.27*y + t^8.29*y + 2*t^8.94*y + 4*t^8.96*y + 6*t^8.98*y | g1^5*t^2.22 + 2*g1*t^2.24 + t^2.29/g1^7 + g1^8*t^2.96 + 2*g1^4*t^2.98 + t^3. + 2*g1^3*t^3.73 + 2*g1^10*t^4.45 + 3*g1^6*t^4.47 + 4*g1^2*t^4.49 + t^4.51/g1^2 + (2*t^4.53)/g1^6 + t^4.57/g1^14 + g1^13*t^5.18 + 4*g1^9*t^5.2 + 5*g1^5*t^5.22 + 3*g1*t^5.24 + t^5.27/g1^3 + g1^16*t^5.92 + 2*g1^12*t^5.94 + 5*g1^8*t^5.96 + 4*g1^4*t^5.98 - 3*t^6. + 2*g1^15*t^6.67 + 6*g1^11*t^6.69 + 7*g1^7*t^6.71 + 6*g1^3*t^6.73 + (2*t^6.78)/g1^5 + (2*t^6.82)/g1^13 + t^6.86/g1^21 + 2*g1^18*t^7.41 + 6*g1^14*t^7.43 + 10*g1^10*t^7.45 + 11*g1^6*t^7.47 + 2*g1^2*t^7.49 - t^7.51/g1^2 + t^7.55/g1^10 + g1^21*t^8.14 + 4*g1^17*t^8.16 + 10*g1^13*t^8.18 + 10*g1^9*t^8.2 + 3*g1^5*t^8.22 - 7*g1*t^8.24 - (3*t^8.27)/g1^3 - (4*t^8.29)/g1^7 + g1^24*t^8.88 + 5*g1^20*t^8.9 + 10*g1^16*t^8.92 + 15*g1^12*t^8.94 + 8*g1^8*t^8.96 - t^4.51/(g1^2*y) - t^6.76/(g1*y) - t^6.8/(g1^9*y) + (2*g1^6*t^7.47)/y + t^7.51/(g1^2*y) + (3*t^7.53)/(g1^6*y) + (g1^13*t^8.18)/y + (4*g1^9*t^8.2)/y + (6*g1^5*t^8.22)/y + (3*g1*t^8.24)/y + (3*t^8.27)/(g1^3*y) + t^8.29/(g1^7*y) + (2*g1^12*t^8.94)/y + (4*g1^8*t^8.96)/y + (6*g1^4*t^8.98)/y - (t^4.51*y)/g1^2 - (t^6.76*y)/g1 - (t^6.8*y)/g1^9 + 2*g1^6*t^7.47*y + (t^7.51*y)/g1^2 + (3*t^7.53*y)/g1^6 + g1^13*t^8.18*y + 4*g1^9*t^8.2*y + 6*g1^5*t^8.22*y + 3*g1*t^8.24*y + (3*t^8.27*y)/g1^3 + (t^8.29*y)/g1^7 + 2*g1^12*t^8.94*y + 4*g1^8*t^8.96*y + 6*g1^4*t^8.98*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
4915 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_3M_6$ + $ M_7q_1\tilde{q}_1$ + $ M_4q_1\tilde{q}_2$ + $ M_8\phi_1q_2^2$ | 0.6431 | 0.8465 | 0.7597 | [X:[], M:[1.0, 0.998, 1.004, 0.7515, 0.7495, 0.996, 0.7535, 0.998], q:[0.7495, 0.2505], qb:[0.497, 0.499], phi:[0.501]] | t^2.24 + 3*t^2.25 + t^2.26 + 3*t^2.99 + t^3. + t^3.75 + 5*t^4.49 + 8*t^4.5 + 4*t^4.51 + t^4.52 + t^5.23 + 10*t^5.24 + 7*t^5.25 + 3*t^5.98 + 6*t^5.99 - 2*t^6. - t^4.5/y - t^4.5*y | detail |