Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56521 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_3q_1\tilde{q}_2$ + $ M_3^2$ + $ M_1\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_1M_4$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1^2$ + $ M_7\phi_1\tilde{q}_2^2$ 0.6242 0.813 0.7678 [X:[], M:[0.7551, 0.762, 1.0, 1.2449, 0.7483, 0.9931, 0.9931], q:[0.7483, 0.4966], qb:[0.4897, 0.2517], phi:[0.5034]] [X:[], M:[[3], [7], [0], [-3], [-1], [-4], [-4]], q:[[-1], [-2]], qb:[[-6], [1]], phi:[[2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$\tilde{q}_1\tilde{q}_2$, $ M_5$, $ q_2\tilde{q}_2$, $ M_2$, $ q_2\tilde{q}_1$, $ M_6$, $ M_7$, $ M_3$, $ M_4$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ \phi_1q_2\tilde{q}_1$, $ M_5\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1\tilde{q}_2^2$, $ M_5^2$, $ \phi_1q_2^2$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ \phi_1q_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_2M_5$, $ M_2q_2\tilde{q}_2$, $ M_2^2$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ M_5q_2\tilde{q}_1$, $ M_6\tilde{q}_1\tilde{q}_2$, $ M_7\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_5M_6$, $ M_5M_7$, $ \phi_1q_1\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ M_7q_2\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_3M_5$, $ \phi_1q_1q_2$, $ M_2q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ M_2M_6$, $ M_2M_7$, $ q_2^2\tilde{q}_1^2$, $ M_6q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_1$, $ M_6^2$, $ M_6M_7$, $ M_7^2$, $ M_3q_2\tilde{q}_1$, $ M_4\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2^2$, $ M_4M_5$, $ M_3M_6$, $ M_3M_7$, $ M_4q_2\tilde{q}_2$, $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ . -3 t^2.22 + 2*t^2.24 + t^2.29 + t^2.96 + 2*t^2.98 + t^3. + 2*t^3.73 + 2*t^4.45 + 3*t^4.47 + 4*t^4.49 + t^4.51 + 2*t^4.53 + t^4.57 + t^5.18 + 4*t^5.2 + 5*t^5.22 + 3*t^5.24 + t^5.27 + t^5.92 + 2*t^5.94 + 5*t^5.96 + 4*t^5.98 - 3*t^6. + 2*t^6.67 + 6*t^6.69 + 7*t^6.71 + 6*t^6.73 + 2*t^6.78 + 2*t^6.82 + t^6.86 + 2*t^7.41 + 6*t^7.43 + 10*t^7.45 + 11*t^7.47 + 2*t^7.49 - t^7.51 + t^7.55 + t^8.14 + 4*t^8.16 + 10*t^8.18 + 10*t^8.2 + 3*t^8.22 - 7*t^8.24 - 3*t^8.27 - 4*t^8.29 + t^8.88 + 5*t^8.9 + 10*t^8.92 + 15*t^8.94 + 8*t^8.96 - t^4.51/y - t^6.76/y - t^6.8/y + (2*t^7.47)/y + t^7.51/y + (3*t^7.53)/y + t^8.18/y + (4*t^8.2)/y + (6*t^8.22)/y + (3*t^8.24)/y + (3*t^8.27)/y + t^8.29/y + (2*t^8.94)/y + (4*t^8.96)/y + (6*t^8.98)/y - t^4.51*y - t^6.76*y - t^6.8*y + 2*t^7.47*y + t^7.51*y + 3*t^7.53*y + t^8.18*y + 4*t^8.2*y + 6*t^8.22*y + 3*t^8.24*y + 3*t^8.27*y + t^8.29*y + 2*t^8.94*y + 4*t^8.96*y + 6*t^8.98*y t^2.22/g1^5 + (2*t^2.24)/g1 + g1^7*t^2.29 + t^2.96/g1^8 + (2*t^2.98)/g1^4 + t^3. + (2*t^3.73)/g1^3 + (2*t^4.45)/g1^10 + (3*t^4.47)/g1^6 + (4*t^4.49)/g1^2 + g1^2*t^4.51 + 2*g1^6*t^4.53 + g1^14*t^4.57 + t^5.18/g1^13 + (4*t^5.2)/g1^9 + (5*t^5.22)/g1^5 + (3*t^5.24)/g1 + g1^3*t^5.27 + t^5.92/g1^16 + (2*t^5.94)/g1^12 + (5*t^5.96)/g1^8 + (4*t^5.98)/g1^4 - 3*t^6. + (2*t^6.67)/g1^15 + (6*t^6.69)/g1^11 + (7*t^6.71)/g1^7 + (6*t^6.73)/g1^3 + 2*g1^5*t^6.78 + 2*g1^13*t^6.82 + g1^21*t^6.86 + (2*t^7.41)/g1^18 + (6*t^7.43)/g1^14 + (10*t^7.45)/g1^10 + (11*t^7.47)/g1^6 + (2*t^7.49)/g1^2 - g1^2*t^7.51 + g1^10*t^7.55 + t^8.14/g1^21 + (4*t^8.16)/g1^17 + (10*t^8.18)/g1^13 + (10*t^8.2)/g1^9 + (3*t^8.22)/g1^5 - (7*t^8.24)/g1 - 3*g1^3*t^8.27 - 4*g1^7*t^8.29 + t^8.88/g1^24 + (5*t^8.9)/g1^20 + (10*t^8.92)/g1^16 + (15*t^8.94)/g1^12 + (8*t^8.96)/g1^8 - (g1^2*t^4.51)/y - (g1*t^6.76)/y - (g1^9*t^6.8)/y + (2*t^7.47)/(g1^6*y) + (g1^2*t^7.51)/y + (3*g1^6*t^7.53)/y + t^8.18/(g1^13*y) + (4*t^8.2)/(g1^9*y) + (6*t^8.22)/(g1^5*y) + (3*t^8.24)/(g1*y) + (3*g1^3*t^8.27)/y + (g1^7*t^8.29)/y + (2*t^8.94)/(g1^12*y) + (4*t^8.96)/(g1^8*y) + (6*t^8.98)/(g1^4*y) - g1^2*t^4.51*y - g1*t^6.76*y - g1^9*t^6.8*y + (2*t^7.47*y)/g1^6 + g1^2*t^7.51*y + 3*g1^6*t^7.53*y + (t^8.18*y)/g1^13 + (4*t^8.2*y)/g1^9 + (6*t^8.22*y)/g1^5 + (3*t^8.24*y)/g1 + 3*g1^3*t^8.27*y + g1^7*t^8.29*y + (2*t^8.94*y)/g1^12 + (4*t^8.96*y)/g1^8 + (6*t^8.98*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
54349 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_3q_1\tilde{q}_2$ + $ M_3^2$ + $ M_1\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_1M_4$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1^2$ 0.6242 0.8107 0.7699 [X:[], M:[0.7441, 0.7363, 1.0, 1.2559, 0.752, 1.0078], q:[0.752, 0.5039], qb:[0.5117, 0.248], phi:[0.4961]] t^2.21 + 2*t^2.26 + t^2.28 + t^2.98 + t^3. + t^3.02 + t^3.05 + 2*t^3.77 + t^4.42 + 2*t^4.46 + t^4.49 + 4*t^4.51 + 3*t^4.54 + 2*t^4.56 + t^5.19 + 2*t^5.23 + 4*t^5.26 + 3*t^5.28 + 3*t^5.3 + t^5.33 + t^5.95 + t^5.98 - 2*t^6. - t^4.49/y - t^4.49*y detail