Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
6444 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{3}M_{8}$ + ${ }M_{9}\phi_{1}^{2}$ + ${ }M_{10}M_{8}$ | 0.6942 | 0.8747 | 0.7937 | [M:[1.009, 0.7644, 0.9339, 0.8395, 1.1605, 0.7172, 0.7923, 1.0661, 1.1133, 0.9339], q:[0.6088, 0.3822], qb:[0.4573, 0.7783], phi:[0.4433]] | [M:[[2, -14], [-2, -2], [-1, -15], [1, -1], [-1, 1], [-1, 5], [2, 6], [1, 15], [0, 8], [-1, -15]], q:[[-1, 15], [-1, -1]], qb:[[2, 0], [0, 2]], phi:[[0, -4]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{6}$, ${ }M_{2}$, ${ }M_{7}$, ${ }M_{4}$, ${ }M_{10}$, ${ }M_{1}$, ${ }M_{9}$, ${ }M_{5}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{2}M_{6}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{2}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{7}$, ${ }M_{10}M_{6}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{10}M_{2}$, ${ }M_{1}M_{6}$, ${ }M_{10}M_{7}$, ${ }M_{1}M_{2}$, ${ }M_{10}M_{4}$, ${ }M_{1}M_{7}$, ${ }M_{6}M_{9}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{10}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{2}M_{9}$, ${ }M_{7}M_{9}$, ${ }M_{1}M_{10}$, ${ }M_{5}M_{7}$, ${ }M_{4}M_{9}$ | ${}$ | -2 | t^2.152 + t^2.293 + t^2.377 + t^2.518 + t^2.802 + t^3.027 + t^3.34 + t^3.482 + t^4.074 + t^4.162 + 2*t^4.303 + t^4.445 + 2*t^4.528 + t^4.586 + 2*t^4.67 + t^4.754 + t^4.812 + t^4.895 + t^4.953 + t^4.983 + t^5.037 + t^5.095 + 2*t^5.178 + t^5.32 + t^5.404 + t^5.492 + t^5.603 + 2*t^5.633 + t^5.717 + t^5.829 + 2*t^5.858 - 2*t^6. + t^6.054 + t^6.283 + t^6.313 + t^6.367 + t^6.45 + 2*t^6.455 + t^6.538 + t^6.592 + 2*t^6.596 - t^6.65 + 3*t^6.68 + t^6.738 + 3*t^6.822 + t^6.88 + 2*t^6.905 + 2*t^6.963 + 2*t^7.047 + t^7.1 + 2*t^7.105 + t^7.13 + t^7.135 + t^7.188 + t^7.246 + t^7.272 + t^7.276 + 2*t^7.33 + t^7.36 + t^7.388 + t^7.414 + 2*t^7.472 + t^7.501 + 3*t^7.555 + t^7.613 + 2*t^7.643 + t^7.755 + t^7.78 + 2*t^7.785 + t^7.868 + t^7.897 + t^7.926 + 2*t^7.98 + 2*t^8.01 + t^8.093 + t^8.122 + t^8.147 - 3*t^8.152 + 2*t^8.205 + 2*t^8.235 - 3*t^8.293 + t^8.323 + t^8.347 - 2*t^8.377 + t^8.405 + t^8.431 + t^8.435 + 2*t^8.465 - 2*t^8.518 + t^8.602 + 2*t^8.606 + t^8.63 + t^8.66 + t^8.69 + t^8.744 + 2*t^8.748 - 4*t^8.802 + t^8.827 + 2*t^8.831 + t^8.855 + 2*t^8.89 + t^8.915 - t^8.943 + t^8.969 + 3*t^8.973 - t^4.33/y - t^6.482/y - t^6.623/y - t^6.707/y - t^7.132/y + t^7.303/y - t^7.357/y + t^7.445/y + (2*t^7.528)/y + (2*t^7.67)/y + t^7.812/y + t^7.895/y + (2*t^7.953)/y + t^8.037/y + t^8.095/y + (3*t^8.178)/y + (2*t^8.32)/y + t^8.404/y + t^8.492/y + t^8.545/y + t^8.633/y + t^8.717/y + t^8.829/y + t^8.858/y - t^8.916/y - t^4.33*y - t^6.482*y - t^6.623*y - t^6.707*y - t^7.132*y + t^7.303*y - t^7.357*y + t^7.445*y + 2*t^7.528*y + 2*t^7.67*y + t^7.812*y + t^7.895*y + 2*t^7.953*y + t^8.037*y + t^8.095*y + 3*t^8.178*y + 2*t^8.32*y + t^8.404*y + t^8.492*y + t^8.545*y + t^8.633*y + t^8.717*y + t^8.829*y + t^8.858*y - t^8.916*y | (g2^5*t^2.152)/g1 + t^2.293/(g1^2*g2^2) + g1^2*g2^6*t^2.377 + (g1*t^2.518)/g2 + t^2.802/(g1*g2^15) + (g1^2*t^3.027)/g2^14 + g2^8*t^3.34 + (g2*t^3.482)/g1 + (g1^4*t^4.074)/g2^4 + (g2^17*t^4.162)/g1 + (2*g2^10*t^4.303)/g1^2 + (g2^3*t^4.445)/g1^3 + 2*g1*g2^11*t^4.528 + t^4.586/(g1^4*g2^4) + 2*g2^4*t^4.67 + g1^4*g2^12*t^4.754 + t^4.812/(g1*g2^3) + g1^3*g2^5*t^4.895 + t^4.953/(g1^2*g2^10) + (g2^26*t^4.983)/g1^2 + (g1^2*t^5.037)/g2^2 + t^5.095/(g1^3*g2^17) + (2*g1*t^5.178)/g2^9 + t^5.32/g2^16 + (g1^4*t^5.404)/g2^8 + (g2^13*t^5.492)/g1 + t^5.603/(g1^2*g2^30) + (2*g2^6*t^5.633)/g1^2 + g1^2*g2^14*t^5.717 + (g1*t^5.829)/g2^29 + 2*g1*g2^7*t^5.858 - 2*t^6. + (g1^4*t^6.054)/g2^28 + t^6.283/(g1^2*g2^14) + (g2^22*t^6.313)/g1^2 + (g1^2*t^6.367)/g2^6 + g1^6*g2^2*t^6.45 + (2*g2^15*t^6.455)/g1^3 + g1*g2^23*t^6.538 + (g1^5*t^6.592)/g2^5 + (2*g2^8*t^6.596)/g1^4 - t^6.65/g2^20 + 3*g2^16*t^6.68 + (g2*t^6.738)/g1^5 + (3*g2^9*t^6.822)/g1 + t^6.88/(g1^6*g2^6) + 2*g1^3*g2^17*t^6.905 + (2*g2^2*t^6.963)/g1^2 + 2*g1^2*g2^10*t^7.047 + (g1^6*t^7.1)/g2^18 + (2*t^7.105)/(g1^3*g2^5) + g1^6*g2^18*t^7.13 + (g2^31*t^7.135)/g1^3 + g1*g2^3*t^7.188 + t^7.246/(g1^4*g2^12) + g1^5*g2^11*t^7.272 + (g2^24*t^7.276)/g1^4 + (2*t^7.33)/g2^4 + g2^32*t^7.36 + t^7.388/(g1^5*g2^19) + g1^4*g2^4*t^7.414 + (2*t^7.472)/(g1*g2^11) + (g2^25*t^7.501)/g1 + (3*g1^3*t^7.555)/g2^3 + t^7.613/(g1^2*g2^18) + (2*g2^18*t^7.643)/g1^2 + t^7.755/(g1^3*g2^25) + (g1^6*t^7.78)/g2^2 + (2*g2^11*t^7.785)/g1^3 + g1*g2^19*t^7.868 + t^7.897/(g1^4*g2^32) + (g2^4*t^7.926)/g1^4 + (2*t^7.98)/g2^24 + 2*g2^12*t^8.01 + g1^4*g2^20*t^8.093 + t^8.122/(g1*g2^31) + (g1^8*t^8.147)/g2^8 - (3*g2^5*t^8.152)/g1 + (2*g1^3*t^8.205)/g2^23 + 2*g1^3*g2^13*t^8.235 - (3*t^8.293)/(g1^2*g2^2) + (g2^34*t^8.323)/g1^2 + (g1^2*t^8.347)/g2^30 - 2*g1^2*g2^6*t^8.377 + t^8.405/(g1^3*g2^45) + (g1^6*t^8.431)/g2^22 + t^8.435/(g1^3*g2^9) + (2*g2^27*t^8.465)/g1^3 - (2*g1*t^8.518)/g2 + g1^5*g2^7*t^8.602 + (2*g2^20*t^8.606)/g1^4 + t^8.63/g2^44 + t^8.66/g2^8 + g2^28*t^8.69 + g1^4*t^8.744 + (2*g2^13*t^8.748)/g1^5 - (4*t^8.802)/(g1*g2^15) + g1^8*g2^8*t^8.827 + (2*g2^21*t^8.831)/g1 + (g1^3*t^8.855)/g2^43 + (2*g2^6*t^8.89)/g1^6 + g1^3*g2^29*t^8.915 - t^8.943/(g1^2*g2^22) + g1^7*g2*t^8.969 + (3*g2^14*t^8.973)/g1^2 - t^4.33/(g2^4*y) - (g2*t^6.482)/(g1*y) - t^6.623/(g1^2*g2^6*y) - (g1^2*g2^2*t^6.707)/y - t^7.132/(g1*g2^19*y) + (g2^10*t^7.303)/(g1^2*y) - (g1^2*t^7.357)/(g2^18*y) + (g2^3*t^7.445)/(g1^3*y) + (2*g1*g2^11*t^7.528)/y + (2*g2^4*t^7.67)/y + t^7.812/(g1*g2^3*y) + (g1^3*g2^5*t^7.895)/y + (2*t^7.953)/(g1^2*g2^10*y) + (g1^2*t^8.037)/(g2^2*y) + t^8.095/(g1^3*g2^17*y) + (3*g1*t^8.178)/(g2^9*y) + (2*t^8.32)/(g2^16*y) + (g1^4*t^8.404)/(g2^8*y) + (g2^13*t^8.492)/(g1*y) + (g1^3*t^8.545)/(g2^15*y) + (g2^6*t^8.633)/(g1^2*y) + (g1^2*g2^14*t^8.717)/y + (g1*t^8.829)/(g2^29*y) + (g1*g2^7*t^8.858)/y - t^8.916/(g1^4*g2^8*y) - (t^4.33*y)/g2^4 - (g2*t^6.482*y)/g1 - (t^6.623*y)/(g1^2*g2^6) - g1^2*g2^2*t^6.707*y - (t^7.132*y)/(g1*g2^19) + (g2^10*t^7.303*y)/g1^2 - (g1^2*t^7.357*y)/g2^18 + (g2^3*t^7.445*y)/g1^3 + 2*g1*g2^11*t^7.528*y + 2*g2^4*t^7.67*y + (t^7.812*y)/(g1*g2^3) + g1^3*g2^5*t^7.895*y + (2*t^7.953*y)/(g1^2*g2^10) + (g1^2*t^8.037*y)/g2^2 + (t^8.095*y)/(g1^3*g2^17) + (3*g1*t^8.178*y)/g2^9 + (2*t^8.32*y)/g2^16 + (g1^4*t^8.404*y)/g2^8 + (g2^13*t^8.492*y)/g1 + (g1^3*t^8.545*y)/g2^15 + (g2^6*t^8.633*y)/g1^2 + g1^2*g2^14*t^8.717*y + (g1*t^8.829*y)/g2^29 + g1*g2^7*t^8.858*y - (t^8.916*y)/(g1^4*g2^8) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
4804 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{3}M_{8}$ + ${ }M_{9}\phi_{1}^{2}$ | 0.6913 | 0.874 | 0.791 | [M:[1.0445, 0.7929, 1.0041, 0.8332, 1.1668, 0.7074, 0.7478, 0.9959, 1.0813], q:[0.5591, 0.3964], qb:[0.4368, 0.7703], phi:[0.4593]] | t^2.122 + t^2.243 + t^2.379 + t^2.5 + t^2.988 + t^3.133 + t^3.244 + t^3.5 + t^3.988 + t^3.999 + 2*t^4.245 + 2*t^4.366 + t^4.487 + t^4.501 + 2*t^4.622 + t^4.733 + t^4.743 + t^4.757 + t^4.878 + t^4.999 + t^5.11 + t^5.231 + t^5.256 + 2*t^5.366 + t^5.377 + 2*t^5.487 + 2*t^5.623 + 2*t^5.744 + t^5.975 - 2*t^6. - t^4.378/y - t^4.378*y | detail |