Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56581 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1^2$ + $ M_6\phi_1q_1^2$ + $ M_7\phi_1q_1q_2$ + $ M_8q_2\tilde{q}_1$ 0.6942 0.8747 0.7937 [X:[], M:[1.1605, 1.009, 0.8395, 0.7644, 1.1133, 0.7923, 0.7172, 0.9339], q:[0.3822, 0.4573], qb:[0.6088, 0.7783], phi:[0.4433]] [X:[], M:[[1, -7], [-2, 8], [-1, 7], [2, -16], [0, 4], [-2, 18], [1, -5], [1, -15]], q:[[1, -8], [-2, 15]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_7$, $ M_4$, $ M_6$, $ M_3$, $ M_8$, $ M_2$, $ M_5$, $ M_1$, $ \phi_1q_2^2$, $ \tilde{q}_1\tilde{q}_2$, $ M_7^2$, $ \phi_1q_1\tilde{q}_1$, $ M_4M_7$, $ M_6M_7$, $ \phi_1q_2\tilde{q}_1$, $ M_4^2$, $ M_4M_6$, $ M_3M_7$, $ M_6^2$, $ M_3M_4$, $ \phi_1q_1\tilde{q}_2$, $ M_3M_6$, $ M_7M_8$, $ \phi_1\tilde{q}_1^2$, $ M_3^2$, $ \phi_1q_2\tilde{q}_2$, $ M_4M_8$, $ M_2M_7$, $ M_6M_8$, $ M_2M_4$, $ M_3M_8$, $ M_2M_6$, $ M_5M_7$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_8^2$, $ M_4M_5$, $ M_1M_7$, $ M_5M_6$, $ M_2M_8$, $ M_3M_5$, $ M_1M_6$ . -2 t^2.15 + t^2.29 + t^2.38 + t^2.52 + t^2.8 + t^3.03 + t^3.34 + t^3.48 + t^4.07 + t^4.16 + 2*t^4.3 + t^4.44 + 2*t^4.53 + t^4.59 + 2*t^4.67 + t^4.75 + t^4.81 + t^4.9 + t^4.95 + t^4.98 + t^5.04 + t^5.09 + 2*t^5.18 + t^5.32 + t^5.4 + t^5.49 + t^5.6 + 2*t^5.63 + t^5.72 + t^5.83 + 2*t^5.86 - 2*t^6. + t^6.05 + t^6.28 + t^6.31 + t^6.37 + 3*t^6.45 + t^6.54 + t^6.59 + 2*t^6.6 - t^6.65 + 3*t^6.68 + t^6.74 + 3*t^6.82 + t^6.88 + 2*t^6.91 + 2*t^6.96 + 2*t^7.05 + 3*t^7.1 + 2*t^7.13 + t^7.19 + t^7.25 + t^7.27 + t^7.28 + 2*t^7.33 + t^7.36 + t^7.39 + t^7.41 + 2*t^7.47 + t^7.5 + 3*t^7.56 + t^7.61 + 2*t^7.64 + t^7.75 + 3*t^7.78 + t^7.87 + t^7.9 + t^7.93 + 2*t^7.98 + 2*t^8.01 + t^8.09 + t^8.12 - 2*t^8.15 + 2*t^8.21 + 2*t^8.24 - 3*t^8.29 + t^8.32 + t^8.35 - 2*t^8.38 + t^8.41 + 2*t^8.43 + 2*t^8.46 - 2*t^8.52 + t^8.6 + 2*t^8.61 + t^8.63 + t^8.66 + t^8.69 + t^8.74 + 2*t^8.75 - 4*t^8.8 + 3*t^8.83 + t^8.86 + 2*t^8.89 + t^8.92 - t^8.94 + 4*t^8.97 - t^4.33/y - t^6.48/y - t^6.62/y - t^6.71/y - t^7.13/y + t^7.3/y - t^7.36/y + t^7.44/y + (2*t^7.53)/y + (2*t^7.67)/y + t^7.81/y + t^7.9/y + (2*t^7.95)/y + t^8.04/y + t^8.09/y + (3*t^8.18)/y + (2*t^8.32)/y + t^8.4/y + t^8.49/y + t^8.55/y + t^8.63/y + t^8.72/y + t^8.83/y + t^8.86/y - t^8.92/y - t^4.33*y - t^6.48*y - t^6.62*y - t^6.71*y - t^7.13*y + t^7.3*y - t^7.36*y + t^7.44*y + 2*t^7.53*y + 2*t^7.67*y + t^7.81*y + t^7.9*y + 2*t^7.95*y + t^8.04*y + t^8.09*y + 3*t^8.18*y + 2*t^8.32*y + t^8.4*y + t^8.49*y + t^8.55*y + t^8.63*y + t^8.72*y + t^8.83*y + t^8.86*y - t^8.92*y (g1*t^2.15)/g2^5 + (g1^2*t^2.29)/g2^16 + (g2^18*t^2.38)/g1^2 + (g2^7*t^2.52)/g1 + (g1*t^2.8)/g2^15 + (g2^8*t^3.03)/g1^2 + g2^4*t^3.34 + (g1*t^3.48)/g2^7 + (g2^28*t^4.07)/g1^4 + g1*g2*t^4.16 + (2*g1^2*t^4.3)/g2^10 + (g1^3*t^4.44)/g2^21 + (2*g2^13*t^4.53)/g1 + (g1^4*t^4.59)/g2^32 + 2*g2^2*t^4.67 + (g2^36*t^4.75)/g1^4 + (g1*t^4.81)/g2^9 + (g2^25*t^4.9)/g1^3 + (g1^2*t^4.95)/g2^20 + (g1^2*t^4.98)/g2^2 + (g2^14*t^5.04)/g1^2 + (g1^3*t^5.09)/g2^31 + (2*g2^3*t^5.18)/g1 + t^5.32/g2^8 + (g2^26*t^5.4)/g1^4 + (g1*t^5.49)/g2 + (g1^2*t^5.6)/g2^30 + (2*g1^2*t^5.63)/g2^12 + (g2^22*t^5.72)/g1^2 + t^5.83/(g1*g2^7) + (2*g2^11*t^5.86)/g1 - 2*t^6. + (g2^16*t^6.05)/g1^4 + (g1^2*t^6.28)/g2^22 + (g1^2*t^6.31)/g2^4 + (g2^12*t^6.37)/g1^2 + (2*g1^3*t^6.45)/g2^15 + (g2^46*t^6.45)/g1^6 + (g2^19*t^6.54)/g1 + (g2^35*t^6.59)/g1^5 + (2*g1^4*t^6.6)/g2^26 - t^6.65/g2^10 + 3*g2^8*t^6.68 + (g1^5*t^6.74)/g2^37 + (3*g1*t^6.82)/g2^3 + (g1^6*t^6.88)/g2^48 + (2*g2^31*t^6.91)/g1^3 + (2*g1^2*t^6.96)/g2^14 + (2*g2^20*t^7.05)/g1^2 + (2*g1^3*t^7.1)/g2^25 + (g2^36*t^7.1)/g1^6 + (g1^3*t^7.13)/g2^7 + (g2^54*t^7.13)/g1^6 + (g2^9*t^7.19)/g1 + (g1^4*t^7.25)/g2^36 + (g2^43*t^7.27)/g1^5 + (g1^4*t^7.28)/g2^18 + (2*t^7.33)/g2^2 + g2^16*t^7.36 + (g1^5*t^7.39)/g2^47 + (g2^32*t^7.41)/g1^4 + (2*g1*t^7.47)/g2^13 + g1*g2^5*t^7.5 + (3*g2^21*t^7.56)/g1^3 + (g1^2*t^7.61)/g2^24 + (2*g1^2*t^7.64)/g2^6 + (g1^3*t^7.75)/g2^35 + (2*g1^3*t^7.78)/g2^17 + (g2^44*t^7.78)/g1^6 + (g2^17*t^7.87)/g1 + (g1^4*t^7.9)/g2^46 + (g1^4*t^7.93)/g2^28 + (2*t^7.98)/g2^12 + 2*g2^6*t^8.01 + (g2^40*t^8.09)/g1^4 + (g1*t^8.12)/g2^23 - (3*g1*t^8.15)/g2^5 + (g2^56*t^8.15)/g1^8 + (2*g2^11*t^8.21)/g1^3 + (2*g2^29*t^8.24)/g1^3 - (3*g1^2*t^8.29)/g2^16 + g1^2*g2^2*t^8.32 + t^8.35/g1^2 - (2*g2^18*t^8.38)/g1^2 + (g1^3*t^8.41)/g2^45 + (g1^3*t^8.43)/g2^27 + (g2^34*t^8.43)/g1^6 + (2*g1^3*t^8.46)/g2^9 - (2*g2^7*t^8.52)/g1 + (g2^41*t^8.6)/g1^5 + (2*g1^4*t^8.61)/g2^20 + t^8.63/g2^22 + t^8.66/g2^4 + g2^14*t^8.69 + (g2^30*t^8.74)/g1^4 + (2*g1^5*t^8.75)/g2^31 - (4*g1*t^8.8)/g2^15 + 2*g1*g2^3*t^8.83 + (g2^64*t^8.83)/g1^8 + (g2*t^8.86)/g1^3 + (2*g1^6*t^8.89)/g2^42 + (g2^37*t^8.92)/g1^3 - (g1^2*t^8.94)/g2^26 + (3*g1^2*t^8.97)/g2^8 + (g2^53*t^8.97)/g1^7 - t^4.33/(g2^2*y) - (g1*t^6.48)/(g2^7*y) - (g1^2*t^6.62)/(g2^18*y) - (g2^16*t^6.71)/(g1^2*y) - (g1*t^7.13)/(g2^17*y) + (g1^2*t^7.3)/(g2^10*y) - (g2^6*t^7.36)/(g1^2*y) + (g1^3*t^7.44)/(g2^21*y) + (2*g2^13*t^7.53)/(g1*y) + (2*g2^2*t^7.67)/y + (g1*t^7.81)/(g2^9*y) + (g2^25*t^7.9)/(g1^3*y) + (2*g1^2*t^7.95)/(g2^20*y) + (g2^14*t^8.04)/(g1^2*y) + (g1^3*t^8.09)/(g2^31*y) + (3*g2^3*t^8.18)/(g1*y) + (2*t^8.32)/(g2^8*y) + (g2^26*t^8.4)/(g1^4*y) + (g1*t^8.49)/(g2*y) + (g2^15*t^8.55)/(g1^3*y) + (g1^2*t^8.63)/(g2^12*y) + (g2^22*t^8.72)/(g1^2*y) + t^8.83/(g1*g2^7*y) + (g2^11*t^8.86)/(g1*y) - (g1^4*t^8.92)/(g2^34*y) - (t^4.33*y)/g2^2 - (g1*t^6.48*y)/g2^7 - (g1^2*t^6.62*y)/g2^18 - (g2^16*t^6.71*y)/g1^2 - (g1*t^7.13*y)/g2^17 + (g1^2*t^7.3*y)/g2^10 - (g2^6*t^7.36*y)/g1^2 + (g1^3*t^7.44*y)/g2^21 + (2*g2^13*t^7.53*y)/g1 + 2*g2^2*t^7.67*y + (g1*t^7.81*y)/g2^9 + (g2^25*t^7.9*y)/g1^3 + (2*g1^2*t^7.95*y)/g2^20 + (g2^14*t^8.04*y)/g1^2 + (g1^3*t^8.09*y)/g2^31 + (3*g2^3*t^8.18*y)/g1 + (2*t^8.32*y)/g2^8 + (g2^26*t^8.4*y)/g1^4 + (g1*t^8.49*y)/g2 + (g2^15*t^8.55*y)/g1^3 + (g1^2*t^8.63*y)/g2^12 + (g2^22*t^8.72*y)/g1^2 + (t^8.83*y)/(g1*g2^7) + (g2^11*t^8.86*y)/g1 - (g1^4*t^8.92*y)/g2^34


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
54573 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1^2$ + $ M_6\phi_1q_1^2$ + $ M_7\phi_1q_1q_2$ 0.6913 0.874 0.791 [X:[], M:[1.1668, 1.0445, 0.8332, 0.7929, 1.0813, 0.7478, 0.7074], q:[0.3964, 0.4368], qb:[0.5591, 0.7703], phi:[0.4593]] t^2.12 + t^2.24 + t^2.38 + t^2.5 + t^2.99 + t^3.13 + t^3.24 + t^3.5 + t^3.99 + t^4. + 2*t^4.24 + 2*t^4.37 + t^4.49 + t^4.5 + 2*t^4.62 + t^4.73 + t^4.74 + t^4.76 + t^4.88 + t^5. + t^5.11 + t^5.23 + t^5.26 + 2*t^5.37 + t^5.38 + 2*t^5.49 + 2*t^5.62 + 2*t^5.74 + t^5.98 - 2*t^6. - t^4.38/y - t^4.38*y detail