Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56581 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ + ${ }M_{7}\phi_{1}q_{1}q_{2}$ + ${ }M_{8}q_{2}\tilde{q}_{1}$ 0.6942 0.8747 0.7937 [M:[1.1605, 1.009, 0.8395, 0.7644, 1.1133, 0.7923, 0.7172, 0.9339], q:[0.3822, 0.4573], qb:[0.6088, 0.7783], phi:[0.4433]] [M:[[1, -7], [-2, 8], [-1, 7], [2, -16], [0, 4], [-2, 18], [1, -5], [1, -15]], q:[[1, -8], [-2, 15]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{7}$, ${ }M_{4}$, ${ }M_{6}$, ${ }M_{3}$, ${ }M_{8}$, ${ }M_{2}$, ${ }M_{5}$, ${ }M_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{7}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}M_{7}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{3}M_{7}$, ${ }M_{6}^{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{6}$, ${ }M_{7}M_{8}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{8}$, ${ }M_{2}M_{7}$, ${ }M_{6}M_{8}$, ${ }M_{2}M_{4}$, ${ }M_{3}M_{8}$, ${ }M_{2}M_{6}$, ${ }M_{5}M_{7}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{8}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{1}M_{7}$, ${ }M_{5}M_{6}$, ${ }M_{2}M_{8}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{6}$ ${}$ -2 t^2.152 + t^2.293 + t^2.377 + t^2.518 + t^2.802 + t^3.027 + t^3.34 + t^3.482 + t^4.074 + t^4.162 + 2*t^4.303 + t^4.445 + 2*t^4.528 + t^4.586 + 2*t^4.67 + t^4.754 + t^4.812 + t^4.895 + t^4.953 + t^4.983 + t^5.037 + t^5.095 + 2*t^5.178 + t^5.32 + t^5.404 + t^5.492 + t^5.603 + 2*t^5.633 + t^5.717 + t^5.829 + 2*t^5.858 - 2*t^6. + t^6.054 + t^6.283 + t^6.313 + t^6.367 + t^6.45 + 2*t^6.455 + t^6.538 + t^6.592 + 2*t^6.596 - t^6.65 + 3*t^6.68 + t^6.738 + 3*t^6.822 + t^6.88 + 2*t^6.905 + 2*t^6.963 + 2*t^7.047 + t^7.1 + 2*t^7.105 + t^7.13 + t^7.135 + t^7.188 + t^7.246 + t^7.272 + t^7.276 + 2*t^7.33 + t^7.36 + t^7.388 + t^7.414 + 2*t^7.472 + t^7.501 + 3*t^7.555 + t^7.613 + 2*t^7.643 + t^7.755 + t^7.78 + 2*t^7.785 + t^7.868 + t^7.897 + t^7.926 + 2*t^7.98 + 2*t^8.01 + t^8.093 + t^8.122 + t^8.147 - 3*t^8.152 + 2*t^8.205 + 2*t^8.235 - 3*t^8.293 + t^8.323 + t^8.347 - 2*t^8.377 + t^8.405 + t^8.431 + t^8.435 + 2*t^8.465 - 2*t^8.518 + t^8.602 + 2*t^8.606 + t^8.63 + t^8.66 + t^8.69 + t^8.744 + 2*t^8.748 - 4*t^8.802 + t^8.827 + 2*t^8.831 + t^8.855 + 2*t^8.89 + t^8.915 - t^8.943 + t^8.969 + 3*t^8.973 - t^4.33/y - t^6.482/y - t^6.623/y - t^6.707/y - t^7.132/y + t^7.303/y - t^7.357/y + t^7.445/y + (2*t^7.528)/y + (2*t^7.67)/y + t^7.812/y + t^7.895/y + (2*t^7.953)/y + t^8.037/y + t^8.095/y + (3*t^8.178)/y + (2*t^8.32)/y + t^8.404/y + t^8.492/y + t^8.545/y + t^8.633/y + t^8.717/y + t^8.829/y + t^8.858/y - t^8.916/y - t^4.33*y - t^6.482*y - t^6.623*y - t^6.707*y - t^7.132*y + t^7.303*y - t^7.357*y + t^7.445*y + 2*t^7.528*y + 2*t^7.67*y + t^7.812*y + t^7.895*y + 2*t^7.953*y + t^8.037*y + t^8.095*y + 3*t^8.178*y + 2*t^8.32*y + t^8.404*y + t^8.492*y + t^8.545*y + t^8.633*y + t^8.717*y + t^8.829*y + t^8.858*y - t^8.916*y (g1*t^2.152)/g2^5 + (g1^2*t^2.293)/g2^16 + (g2^18*t^2.377)/g1^2 + (g2^7*t^2.518)/g1 + (g1*t^2.802)/g2^15 + (g2^8*t^3.027)/g1^2 + g2^4*t^3.34 + (g1*t^3.482)/g2^7 + (g2^28*t^4.074)/g1^4 + g1*g2*t^4.162 + (2*g1^2*t^4.303)/g2^10 + (g1^3*t^4.445)/g2^21 + (2*g2^13*t^4.528)/g1 + (g1^4*t^4.586)/g2^32 + 2*g2^2*t^4.67 + (g2^36*t^4.754)/g1^4 + (g1*t^4.812)/g2^9 + (g2^25*t^4.895)/g1^3 + (g1^2*t^4.953)/g2^20 + (g1^2*t^4.983)/g2^2 + (g2^14*t^5.037)/g1^2 + (g1^3*t^5.095)/g2^31 + (2*g2^3*t^5.178)/g1 + t^5.32/g2^8 + (g2^26*t^5.404)/g1^4 + (g1*t^5.492)/g2 + (g1^2*t^5.603)/g2^30 + (2*g1^2*t^5.633)/g2^12 + (g2^22*t^5.717)/g1^2 + t^5.829/(g1*g2^7) + (2*g2^11*t^5.858)/g1 - 2*t^6. + (g2^16*t^6.054)/g1^4 + (g1^2*t^6.283)/g2^22 + (g1^2*t^6.313)/g2^4 + (g2^12*t^6.367)/g1^2 + (g2^46*t^6.45)/g1^6 + (2*g1^3*t^6.455)/g2^15 + (g2^19*t^6.538)/g1 + (g2^35*t^6.592)/g1^5 + (2*g1^4*t^6.596)/g2^26 - t^6.65/g2^10 + 3*g2^8*t^6.68 + (g1^5*t^6.738)/g2^37 + (3*g1*t^6.822)/g2^3 + (g1^6*t^6.88)/g2^48 + (2*g2^31*t^6.905)/g1^3 + (2*g1^2*t^6.963)/g2^14 + (2*g2^20*t^7.047)/g1^2 + (g2^36*t^7.1)/g1^6 + (2*g1^3*t^7.105)/g2^25 + (g2^54*t^7.13)/g1^6 + (g1^3*t^7.135)/g2^7 + (g2^9*t^7.188)/g1 + (g1^4*t^7.246)/g2^36 + (g2^43*t^7.272)/g1^5 + (g1^4*t^7.276)/g2^18 + (2*t^7.33)/g2^2 + g2^16*t^7.36 + (g1^5*t^7.388)/g2^47 + (g2^32*t^7.414)/g1^4 + (2*g1*t^7.472)/g2^13 + g1*g2^5*t^7.501 + (3*g2^21*t^7.555)/g1^3 + (g1^2*t^7.613)/g2^24 + (2*g1^2*t^7.643)/g2^6 + (g1^3*t^7.755)/g2^35 + (g2^44*t^7.78)/g1^6 + (2*g1^3*t^7.785)/g2^17 + (g2^17*t^7.868)/g1 + (g1^4*t^7.897)/g2^46 + (g1^4*t^7.926)/g2^28 + (2*t^7.98)/g2^12 + 2*g2^6*t^8.01 + (g2^40*t^8.093)/g1^4 + (g1*t^8.122)/g2^23 + (g2^56*t^8.147)/g1^8 - (3*g1*t^8.152)/g2^5 + (2*g2^11*t^8.205)/g1^3 + (2*g2^29*t^8.235)/g1^3 - (3*g1^2*t^8.293)/g2^16 + g1^2*g2^2*t^8.323 + t^8.347/g1^2 - (2*g2^18*t^8.377)/g1^2 + (g1^3*t^8.405)/g2^45 + (g2^34*t^8.431)/g1^6 + (g1^3*t^8.435)/g2^27 + (2*g1^3*t^8.465)/g2^9 - (2*g2^7*t^8.518)/g1 + (g2^41*t^8.602)/g1^5 + (2*g1^4*t^8.606)/g2^20 + t^8.63/g2^22 + t^8.66/g2^4 + g2^14*t^8.69 + (g2^30*t^8.744)/g1^4 + (2*g1^5*t^8.748)/g2^31 - (4*g1*t^8.802)/g2^15 + (g2^64*t^8.827)/g1^8 + 2*g1*g2^3*t^8.831 + (g2*t^8.855)/g1^3 + (2*g1^6*t^8.89)/g2^42 + (g2^37*t^8.915)/g1^3 - (g1^2*t^8.943)/g2^26 + (g2^53*t^8.969)/g1^7 + (3*g1^2*t^8.973)/g2^8 - t^4.33/(g2^2*y) - (g1*t^6.482)/(g2^7*y) - (g1^2*t^6.623)/(g2^18*y) - (g2^16*t^6.707)/(g1^2*y) - (g1*t^7.132)/(g2^17*y) + (g1^2*t^7.303)/(g2^10*y) - (g2^6*t^7.357)/(g1^2*y) + (g1^3*t^7.445)/(g2^21*y) + (2*g2^13*t^7.528)/(g1*y) + (2*g2^2*t^7.67)/y + (g1*t^7.812)/(g2^9*y) + (g2^25*t^7.895)/(g1^3*y) + (2*g1^2*t^7.953)/(g2^20*y) + (g2^14*t^8.037)/(g1^2*y) + (g1^3*t^8.095)/(g2^31*y) + (3*g2^3*t^8.178)/(g1*y) + (2*t^8.32)/(g2^8*y) + (g2^26*t^8.404)/(g1^4*y) + (g1*t^8.492)/(g2*y) + (g2^15*t^8.545)/(g1^3*y) + (g1^2*t^8.633)/(g2^12*y) + (g2^22*t^8.717)/(g1^2*y) + t^8.829/(g1*g2^7*y) + (g2^11*t^8.858)/(g1*y) - (g1^4*t^8.916)/(g2^34*y) - (t^4.33*y)/g2^2 - (g1*t^6.482*y)/g2^7 - (g1^2*t^6.623*y)/g2^18 - (g2^16*t^6.707*y)/g1^2 - (g1*t^7.132*y)/g2^17 + (g1^2*t^7.303*y)/g2^10 - (g2^6*t^7.357*y)/g1^2 + (g1^3*t^7.445*y)/g2^21 + (2*g2^13*t^7.528*y)/g1 + 2*g2^2*t^7.67*y + (g1*t^7.812*y)/g2^9 + (g2^25*t^7.895*y)/g1^3 + (2*g1^2*t^7.953*y)/g2^20 + (g2^14*t^8.037*y)/g1^2 + (g1^3*t^8.095*y)/g2^31 + (3*g2^3*t^8.178*y)/g1 + (2*t^8.32*y)/g2^8 + (g2^26*t^8.404*y)/g1^4 + (g1*t^8.492*y)/g2 + (g2^15*t^8.545*y)/g1^3 + (g1^2*t^8.633*y)/g2^12 + (g2^22*t^8.717*y)/g1^2 + (t^8.829*y)/(g1*g2^7) + (g2^11*t^8.858*y)/g1 - (g1^4*t^8.916*y)/g2^34


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
54573 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ + ${ }M_{7}\phi_{1}q_{1}q_{2}$ 0.6913 0.874 0.791 [M:[1.1668, 1.0445, 0.8332, 0.7929, 1.0813, 0.7478, 0.7074], q:[0.3964, 0.4368], qb:[0.5591, 0.7703], phi:[0.4593]] t^2.122 + t^2.243 + t^2.379 + t^2.5 + t^2.988 + t^3.133 + t^3.244 + t^3.5 + t^3.988 + t^3.999 + 2*t^4.245 + 2*t^4.366 + t^4.487 + t^4.501 + 2*t^4.622 + t^4.733 + t^4.743 + t^4.757 + t^4.878 + t^4.999 + t^5.11 + t^5.231 + t^5.256 + 2*t^5.366 + t^5.377 + 2*t^5.487 + 2*t^5.623 + 2*t^5.744 + t^5.975 - 2*t^6. - t^4.378/y - t^4.378*y detail