Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61198 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.4741 1.6813 0.8768 [X:[1.3371], M:[1.0002, 0.6684, 1.0056, 0.9887], q:[0.5026, 0.5029], qb:[0.4972, 0.5084], phi:[0.3315]] [X:[[0, 0, 2]], M:[[1, 1, -6], [-1, -1, 7], [0, 0, 3], [-1, -1, 0]], q:[[-1, -2, 12], [1, 0, 0]], qb:[[0, 1, -6], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{4}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$ ${}M_{1}^{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$ -1 t^2.01 + t^2.97 + 2*t^3. + t^3.02 + t^3.03 + t^3.99 + 2*t^4.01 + 2*t^4.03 + t^4.97 + 2*t^4.99 + 2*t^5.01 + 3*t^5.02 + t^5.04 + t^5.5 + 2*t^5.52 + t^5.54 + t^5.93 + t^5.97 + t^5.98 - t^6. + 4*t^6.02 + 4*t^6.03 + t^6.05 + t^6.07 + t^6.5 + 2*t^6.51 + t^6.53 + 2*t^6.98 + 2*t^6.99 - t^7. + 5*t^7.01 + 8*t^7.03 + 3*t^7.04 + t^7.05 + 2*t^7.06 + t^7.46 + 3*t^7.51 + t^7.52 + t^7.53 + t^7.54 + t^7.56 + t^7.94 + t^7.95 + t^7.97 + 4*t^7.99 + t^8. - t^8.01 + 11*t^8.02 + 6*t^8.04 + 3*t^8.05 + 3*t^8.06 + t^8.07 - t^8.47 - 2*t^8.49 + 3*t^8.52 + 4*t^8.54 + 3*t^8.55 + t^8.57 + t^8.9 + t^8.93 + t^8.95 + t^8.96 - 3*t^8.97 + 6*t^8.98 + t^8.98/y^2 - t^3.99/y - t^4.99/y - t^6./y - t^6.96/y - (3*t^6.99)/y - t^7.01/y - t^7.03/y - t^7.95/y + t^7.97/y - t^7.99/y - t^8./y + t^8.01/y + t^8.04/y + t^8.97/y - t^3.99*y - t^4.99*y - t^6.*y - t^6.96*y - 3*t^6.99*y - t^7.01*y - t^7.03*y - t^7.95*y + t^7.97*y - t^7.99*y - t^8.*y + t^8.01*y + t^8.04*y + t^8.97*y + t^8.98*y^2 (g3^7*t^2.01)/(g1*g2) + t^2.97/(g1*g2) + (2*g1*g2*t^3.)/g3^6 + g3^3*t^3.02 + (g3^12*t^3.03)/(g1*g2) + (g3^5*t^3.99)/(g1*g2) + g3^2*t^4.01 + (g3^14*t^4.01)/(g1^2*g2^2) + (g1*g2*t^4.03)/g3 + (g3^11*t^4.03)/(g1*g2) + (g3^7*t^4.97)/(g1^2*g2^2) + (g1*g2*t^4.99)/g3^8 + (g3^4*t^4.99)/(g1*g2) + 2*g3*t^5.01 + (g1*g2*t^5.02)/g3^2 + (2*g3^10*t^5.02)/(g1*g2) + (g3^19*t^5.04)/(g1^2*g2^2) + (g2^3*t^5.5)/g3^13 + (g1*g3^11*t^5.52)/g2^2 + (g3^23*t^5.52)/(g1*g2^4) + (g2^3*t^5.54)/g3^7 + t^5.93/(g1^2*g2^2) + t^5.97/g3^6 + (g3^3*t^5.98)/(g1*g2) - 4*t^6. + (2*g1^2*g2^2*t^6.)/g3^12 + (g3^12*t^6.)/(g1^2*g2^2) + (2*g1*g2*t^6.02)/g3^3 + (g3^9*t^6.02)/(g1*g2) + (g3^21*t^6.02)/(g1^3*g2^3) + 3*g3^6*t^6.03 + (g3^18*t^6.03)/(g1^2*g2^2) + (g3^15*t^6.05)/(g1*g2) + (g3^24*t^6.07)/(g1^2*g2^2) + (g2^3*t^6.5)/g3^14 + (g1*g3^10*t^6.51)/g2^2 + (g3^22*t^6.51)/(g1*g2^4) + (g2^3*t^6.53)/g3^8 - t^6.96/g3^7 + (g3^5*t^6.96)/(g1^2*g2^2) + (g3^2*t^6.98)/(g1*g2) + (g3^14*t^6.98)/(g1^3*g2^3) + t^6.99/g3 + (g3^11*t^6.99)/(g1^2*g2^2) - (g1^2*g2^2*t^7.)/g3^13 + (2*g1*g2*t^7.01)/g3^4 + (3*g3^8*t^7.01)/(g1*g2) + (2*g1^2*g2^2*t^7.03)/g3^7 + 3*g3^5*t^7.03 + (3*g3^17*t^7.03)/(g1^2*g2^2) + (2*g3^14*t^7.04)/(g1*g2) + (g3^26*t^7.04)/(g1^3*g2^3) + g1*g2*g3^2*t^7.05 + g3^11*t^7.06 + (g3^23*t^7.06)/(g1^2*g2^2) + (g2^3*t^7.46)/g3^21 + (g2^3*t^7.49)/g3^15 - (g3^12*t^7.49)/g2^3 - (g1*g2^4*t^7.51)/g3^18 + (g1^3*t^7.51)/g3^3 + (g1*g3^9*t^7.51)/g2^2 + (g3^21*t^7.51)/(g1*g2^4) + (g3^33*t^7.51)/(g1^3*g2^6) + (g3^30*t^7.52)/(g1^2*g2^5) + (g2^3*t^7.53)/g3^9 + (g2^2*t^7.54)/g1 + (g2^3*t^7.56)/g3^3 + (g3^7*t^7.94)/(g1^3*g2^3) + (g3^4*t^7.95)/(g1^2*g2^2) + (g3*t^7.97)/(g1*g2) + (g1^2*g2^2*t^7.99)/g3^14 + t^7.99/g3^2 + (2*g3^10*t^7.99)/(g1^2*g2^2) + (g3^19*t^8.)/(g1^3*g2^3) + (2*g1*g2*t^8.01)/g3^5 - (3*g3^7*t^8.01)/(g1*g2) + (2*g1^2*g2^2*t^8.02)/g3^8 + 5*g3^4*t^8.02 + (3*g3^16*t^8.02)/(g1^2*g2^2) + (g3^28*t^8.02)/(g1^4*g2^4) + g1*g2*g3*t^8.04 + (4*g3^13*t^8.04)/(g1*g2) + (g3^25*t^8.04)/(g1^3*g2^3) + (3*g3^22*t^8.05)/(g1^2*g2^2) + (g1^2*g2^2*t^8.06)/g3^2 + 2*g3^10*t^8.06 + (g3^31*t^8.07)/(g1^3*g2^3) - (g1*g2^4*t^8.47)/g3^25 - (g1^2*t^8.49)/(g2*g3) - (g3^11*t^8.49)/g2^3 + (g2^3*t^8.52)/g3^10 + (g1^2*g3^5*t^8.52)/g2 + (g3^17*t^8.52)/g2^3 + (g1*g2^4*t^8.54)/g3^13 + (g2^2*t^8.54)/(g1*g3) + (g1*g3^14*t^8.54)/g2^2 + (g3^26*t^8.54)/(g1*g2^4) + (g2^3*t^8.55)/g3^4 + (g3^23*t^8.55)/g2^3 + (g3^35*t^8.55)/(g1^2*g2^5) + (g2^2*g3^5*t^8.57)/g1 + t^8.9/(g1^3*g2^3) + t^8.93/(g1*g2*g3^6) + (g3^3*t^8.95)/(g1^2*g2^2) + (g3^12*t^8.96)/(g1^3*g2^3) - (4*t^8.97)/(g1*g2) + (g1*g2*t^8.97)/g3^12 + (3*t^8.98)/g3^3 + (2*g3^9*t^8.98)/(g1^2*g2^2) + (g3^21*t^8.98)/(g1^4*g2^4) + t^8.98/(g3^3*y^2) - t^3.99/(g3*y) - t^4.99/(g3^2*y) - (g3^6*t^6.)/(g1*g2*y) - t^6.96/(g1*g2*g3*y) - (2*g1*g2*t^6.99)/(g3^7*y) - (g3^5*t^6.99)/(g1*g2*y) - (g3^2*t^7.01)/y - (g3^11*t^7.03)/(g1*g2*y) - t^7.95/(g1*g2*g3^2*y) + (g3^7*t^7.97)/(g1^2*g2^2*y) - (g1*g2*t^7.99)/(g3^8*y) - (g3^13*t^8.)/(g1^2*g2^2*y) + (g3*t^8.01)/y + (g3^19*t^8.04)/(g1^2*g2^2*y) + (2*t^8.97)/(g3^6*y) - (g3^6*t^8.97)/(g1^2*g2^2*y) - (t^3.99*y)/g3 - (t^4.99*y)/g3^2 - (g3^6*t^6.*y)/(g1*g2) - (t^6.96*y)/(g1*g2*g3) - (2*g1*g2*t^6.99*y)/g3^7 - (g3^5*t^6.99*y)/(g1*g2) - g3^2*t^7.01*y - (g3^11*t^7.03*y)/(g1*g2) - (t^7.95*y)/(g1*g2*g3^2) + (g3^7*t^7.97*y)/(g1^2*g2^2) - (g1*g2*t^7.99*y)/g3^8 - (g3^13*t^8.*y)/(g1^2*g2^2) + g3*t^8.01*y + (g3^19*t^8.04*y)/(g1^2*g2^2) + (2*t^8.97*y)/g3^6 - (g3^6*t^8.97*y)/(g1^2*g2^2) + (t^8.98*y^2)/g3^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
59031 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ 1.4967 1.7306 0.8648 [X:[], M:[0.9831, 0.6782, 0.9838], q:[0.5088, 0.475], qb:[0.5081, 0.4756], phi:[0.3387]] 2*t^2.03 + t^2.85 + 4*t^2.95 + t^3.87 + t^3.97 + t^4.06 + 3*t^4.07 + 2*t^4.88 + t^4.89 + 6*t^4.98 + 4*t^4.99 + t^5.08 + 2*t^5.39 + 2*t^5.49 + t^5.7 + 3*t^5.8 + t^5.81 + 9*t^5.9 + t^5.91 - 2*t^6. - t^4.02/y - t^5.03/y - t^4.02*y - t^5.03*y detail