Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
59031 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ | 1.4967 | 1.7306 | 0.8648 | [X:[], M:[0.9831, 0.6782, 0.9838], q:[0.5088, 0.475], qb:[0.5081, 0.4756], phi:[0.3387]] | [X:[], M:[[1, 6, 0], [-1, -7, 1], [0, -3, 3]], q:[[-1, -12, 0], [1, 0, 0]], qb:[[0, 6, 0], [0, 0, 6]], phi:[[0, 1, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ | ${}M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ | -2 | 2*t^2.03 + t^2.85 + 4*t^2.95 + t^3.87 + t^3.97 + t^4.06 + 3*t^4.07 + 2*t^4.88 + t^4.89 + 6*t^4.98 + 4*t^4.99 + t^5.08 + 2*t^5.39 + 2*t^5.49 + t^5.7 + 3*t^5.8 + t^5.81 + 9*t^5.9 + t^5.91 - 2*t^6. + 4*t^6.1 + 2*t^6.41 + 2*t^6.51 + t^6.72 + 5*t^6.82 - t^6.91 + 9*t^6.92 + 3*t^7.01 + 14*t^7.02 - t^7.11 + t^7.12 + t^7.32 + t^7.33 + t^7.42 + 3*t^7.43 + t^7.52 + 3*t^7.53 + t^7.62 + t^7.63 + 4*t^7.74 + 5*t^7.83 + 9*t^7.84 + 8*t^7.93 + 17*t^7.94 - 7*t^8.03 + 4*t^8.04 + t^8.13 + 2*t^8.14 + t^8.24 + t^8.25 + 4*t^8.34 + 4*t^8.35 + 3*t^8.44 + 3*t^8.45 - 2*t^8.54 + t^8.56 - 2*t^8.64 + 3*t^8.65 + t^8.66 + 9*t^8.75 + 2*t^8.76 + 14*t^8.85 + 6*t^8.86 - 8*t^8.95 + 5*t^8.96 - t^4.02/y - t^5.03/y - (2*t^6.05)/y - t^6.87/y - (4*t^6.97)/y - t^7.06/y + t^7.89/y + (4*t^7.98)/y + (2*t^7.99)/y - (2*t^8.08)/y - t^8.09/y + (3*t^8.8)/y + t^8.81/y + (5*t^8.9)/y - t^4.02*y - t^5.03*y - 2*t^6.05*y - t^6.87*y - 4*t^6.97*y - t^7.06*y + t^7.89*y + 4*t^7.98*y + 2*t^7.99*y - 2*t^8.08*y - t^8.09*y + 3*t^8.8*y + t^8.81*y + 5*t^8.9*y | (g2^2*t^2.03)/g3^2 + (g3*t^2.03)/(g1*g2^7) + g1*g3^6*t^2.85 + 2*g1*g2^6*t^2.95 + (g3^3*t^2.95)/g2^3 + (g3^6*t^2.95)/(g1*g2^12) + g1*g2*g3^5*t^3.87 + (g3^5*t^3.97)/(g1*g2^11) + (g2^4*t^4.06)/g3^4 + (2*t^4.07)/(g1*g2^5*g3) + (g3^2*t^4.07)/(g1^2*g2^14) + 2*g1*g2^2*g3^4*t^4.88 + (g3^7*t^4.89)/g2^7 + (3*g1*g2^8*t^4.98)/g3^2 + (3*g3*t^4.98)/g2 + (3*g3^4*t^4.99)/(g1*g2^10) + (g3^7*t^4.99)/(g1^2*g2^19) + t^5.08/(g1*g2^4*g3^2) + (g1*t^5.39)/(g2^11*g3) + g2^7*g3^11*t^5.39 + t^5.49/(g1*g2^23*g3) + g2^13*g3^5*t^5.49 + g1^2*g3^12*t^5.7 + 2*g1^2*g2^6*g3^6*t^5.8 + (g1*g3^9*t^5.8)/g2^3 + (g3^12*t^5.81)/g2^12 + 2*g1^2*g2^12*t^5.9 + 3*g1*g2^3*g3^3*t^5.9 + (3*g3^6*t^5.9)/g2^6 + (g3^9*t^5.9)/(g1*g2^15) + (g3^12*t^5.91)/(g1^2*g2^24) - 4*t^6. + (g3^3*t^6.)/(g1*g2^9) + (g3^6*t^6.)/(g1^2*g2^18) + t^6.1/(g1^2*g2^12) + (2*t^6.1)/(g1*g2^3*g3^3) + (g3^3*t^6.1)/(g1^3*g2^21) + (g1*t^6.41)/(g2^10*g3^2) + g2^8*g3^10*t^6.41 + t^6.51/(g1*g2^22*g3^2) + g2^14*g3^4*t^6.51 + g1^2*g2*g3^11*t^6.72 + 2*g1^2*g2^7*g3^5*t^6.82 + (g1*g3^8*t^6.82)/g2^2 + (2*g3^11*t^6.82)/g2^11 - (g1^2*g2^13*t^6.91)/g3 + 2*g1*g2^4*g3^2*t^6.92 + (4*g3^5*t^6.92)/g2^5 + (2*g3^8*t^6.92)/(g1*g2^14) + (g3^11*t^6.92)/(g1^2*g2^23) + (3*g1*g2^10*t^7.01)/g3^4 + (3*g2*t^7.02)/g3 + (6*g3^2*t^7.02)/(g1*g2^8) + (4*g3^5*t^7.02)/(g1^2*g2^17) + (g3^8*t^7.02)/(g1^3*g2^26) - (g2^7*t^7.11)/g3^7 + t^7.12/(g1*g2^2*g3^4) + (g1^3*g2^3*t^7.32)/g3^3 + g2^3*g3^15*t^7.33 + (2*g1*t^7.42)/(g2^9*g3^3) - g1*g2^18*g3^6*t^7.42 + 2*g2^9*g3^9*t^7.43 + (g3^12*t^7.43)/g1 - t^7.52/(g2^12*g3^6) + 2*g2^15*g3^3*t^7.52 + t^7.53/(g1^2*g2^30) + (2*t^7.53)/(g1*g2^21*g3^3) + (g2^21*t^7.62)/g3^3 + t^7.63/(g1^3*g2^33*g3^3) + 3*g1^2*g2^2*g3^10*t^7.74 + (g1*g3^13*t^7.74)/g2^7 + 5*g1^2*g2^8*g3^4*t^7.83 + (3*g1*g3^7*t^7.84)/g2 + (5*g3^10*t^7.84)/g2^10 + (g3^13*t^7.84)/(g1*g2^19) + (3*g1^2*g2^14*t^7.93)/g3^2 + 5*g1*g2^5*g3*t^7.93 + (8*g3^4*t^7.94)/g2^4 + (4*g3^7*t^7.94)/(g1*g2^13) + (4*g3^10*t^7.94)/(g1^2*g2^22) + (g3^13*t^7.94)/(g1^3*g2^31) - (4*g2^2*t^8.03)/g3^2 - (3*g3*t^8.03)/(g1*g2^7) + (3*g3^4*t^8.04)/(g1^2*g2^16) + (g3^7*t^8.04)/(g1^3*g2^25) - (g2^8*t^8.13)/g3^8 + t^8.13/(g1*g2*g3^5) + t^8.13/(g1^2*g2^10*g3^2) + (g3*t^8.14)/(g1^3*g2^19) + (g3^4*t^8.14)/(g1^4*g2^28) + (g1^2*g3^5*t^8.24)/g2^11 + g1*g2^7*g3^17*t^8.25 + (g1^2*t^8.34)/(g2^5*g3) + (g1*g3^2*t^8.34)/g2^14 + 2*g1*g2^13*g3^11*t^8.34 + (2*g3^5*t^8.35)/g2^23 + g2^4*g3^14*t^8.35 + (g3^17*t^8.35)/(g1*g2^5) - (g1^2*g2*t^8.44)/g3^7 + (g1*t^8.44)/(g2^8*g3^4) + t^8.44/(g2^17*g3) + 2*g2^10*g3^8*t^8.44 + (g3^2*t^8.45)/(g1*g2^26) + (g3^5*t^8.45)/(g1^2*g2^35) + (g2*g3^11*t^8.45)/g1 - (2*t^8.54)/(g2^11*g3^7) + t^8.54/(g1*g2^20*g3^4) - (g1*g2^25*t^8.54)/g3 + g2^16*g3^2*t^8.54 - (g2^7*g3^5*t^8.54)/g1 + g1^3*g3^18*t^8.56 - t^8.64/(g1^2*g2^23*g3^7) - (g2^13*t^8.64)/(g1*g3) + 2*g1^3*g2^6*g3^12*t^8.65 + (g1^2*g3^15*t^8.65)/g2^3 + (g1*g3^18*t^8.66)/g2^12 + 2*g1^3*g2^12*g3^6*t^8.75 + 4*g1^2*g2^3*g3^9*t^8.75 + (3*g1*g3^12*t^8.75)/g2^6 + (g3^15*t^8.76)/g2^15 + (g3^18*t^8.76)/(g1*g2^24) + 2*g1^3*g2^18*t^8.85 + 5*g1^2*g2^9*g3^3*t^8.85 + (7*g3^9*t^8.85)/g2^9 + (4*g3^12*t^8.86)/(g1*g2^18) + (g3^15*t^8.86)/(g1^2*g2^27) + (g3^18*t^8.86)/(g1^3*g2^36) - 8*g1*g2^6*t^8.95 - (g1^2*g2^15*t^8.95)/g3^3 + (2*g3^3*t^8.95)/g2^3 - (g3^6*t^8.95)/(g1*g2^12) + (4*g3^9*t^8.96)/(g1^2*g2^21) + (g3^12*t^8.96)/(g1^3*g2^30) - (g2*t^4.02)/(g3*y) - (g2^2*t^5.03)/(g3^2*y) - t^6.05/(g1*g2^6*y) - (g2^3*t^6.05)/(g3^3*y) - (g1*g2*g3^5*t^6.87)/y - (2*g1*g2^7*t^6.97)/(g3*y) - (g3^2*t^6.97)/(g2^2*y) - (g3^5*t^6.97)/(g1*g2^11*y) - (g2^4*t^7.06)/(g3^4*y) + (g3^7*t^7.89)/(g2^7*y) + (g1*g2^8*t^7.98)/(g3^2*y) + (3*g3*t^7.98)/(g2*y) + (g3^4*t^7.99)/(g1*g2^10*y) + (g3^7*t^7.99)/(g1^2*g2^19*y) - (g2^5*t^8.08)/(g3^5*y) - t^8.08/(g1*g2^4*g3^2*y) - (g3*t^8.09)/(g1^2*g2^13*y) + (2*g1^2*g2^6*g3^6*t^8.8)/y + (g1*g3^9*t^8.8)/(g2^3*y) + (g3^12*t^8.81)/(g2^12*y) + (g1^2*g2^12*t^8.9)/y + (g1*g2^3*g3^3*t^8.9)/y + (2*g3^6*t^8.9)/(g2^6*y) + (g3^9*t^8.9)/(g1*g2^15*y) - (g2*t^4.02*y)/g3 - (g2^2*t^5.03*y)/g3^2 - (t^6.05*y)/(g1*g2^6) - (g2^3*t^6.05*y)/g3^3 - g1*g2*g3^5*t^6.87*y - (2*g1*g2^7*t^6.97*y)/g3 - (g3^2*t^6.97*y)/g2^2 - (g3^5*t^6.97*y)/(g1*g2^11) - (g2^4*t^7.06*y)/g3^4 + (g3^7*t^7.89*y)/g2^7 + (g1*g2^8*t^7.98*y)/g3^2 + (3*g3*t^7.98*y)/g2 + (g3^4*t^7.99*y)/(g1*g2^10) + (g3^7*t^7.99*y)/(g1^2*g2^19) - (g2^5*t^8.08*y)/g3^5 - (t^8.08*y)/(g1*g2^4*g3^2) - (g3*t^8.09*y)/(g1^2*g2^13) + 2*g1^2*g2^6*g3^6*t^8.8*y + (g1*g3^9*t^8.8*y)/g2^3 + (g3^12*t^8.81*y)/g2^12 + g1^2*g2^12*t^8.9*y + g1*g2^3*g3^3*t^8.9*y + (2*g3^6*t^8.9*y)/g2^6 + (g3^9*t^8.9*y)/(g1*g2^15) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
61198 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ | 1.4741 | 1.6813 | 0.8768 | [X:[1.3371], M:[1.0002, 0.6684, 1.0056, 0.9887], q:[0.5026, 0.5029], qb:[0.4972, 0.5084], phi:[0.3315]] | t^2.01 + t^2.97 + 2*t^3. + t^3.02 + t^3.03 + t^3.99 + 2*t^4.01 + 2*t^4.03 + t^4.97 + 2*t^4.99 + 2*t^5.01 + 3*t^5.02 + t^5.04 + t^5.5 + 2*t^5.52 + t^5.54 + t^5.93 + t^5.97 + t^5.98 - t^6. - t^3.99/y - t^4.99/y - t^6./y - t^3.99*y - t^4.99*y - t^6.*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57689 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.4957 | 1.7262 | 0.8665 | [X:[], M:[0.9832, 0.6815], q:[0.5141, 0.4805], qb:[0.5027, 0.4914], phi:[0.3352]] | t^2.01 + t^2.04 + t^2.92 + 2*t^2.95 + 2*t^3.02 + t^3.92 + 2*t^4.02 + 2*t^4.06 + t^4.09 + 2*t^4.93 + 4*t^4.96 + 2*t^4.99 + 3*t^5.03 + 3*t^5.06 + t^5.43 + t^5.46 + t^5.5 + t^5.53 + t^5.83 + 2*t^5.87 + 2*t^5.9 + 3*t^5.93 + 4*t^5.97 - 4*t^6. - t^4.01/y - t^5.01/y - t^4.01*y - t^5.01*y | detail |