Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61176 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ 1.4818 1.7132 0.8649 [X:[], M:[0.9862, 0.9862, 0.7049], q:[0.5729, 0.5163], qb:[0.4409, 0.4422], phi:[0.3379]] [X:[], M:[[3, 3], [3, 3], [-9, -6]], q:[[-4, -3], [9, 7]], qb:[[1, 0], [0, 2]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ ${}M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 0 t^2.03 + t^2.11 + t^2.87 + t^2.88 + 2*t^2.96 + t^3.05 + t^3.89 + 3*t^4.06 + t^4.14 + t^4.23 + 4*t^4.9 + 6*t^4.99 + 5*t^5.07 + t^5.16 + t^5.74 + 2*t^5.75 + 4*t^5.83 + 6*t^5.92 + 2*t^6.08 + 2*t^6.09 + 2*t^6.17 + t^6.26 + t^6.34 + 2*t^6.76 + 2*t^6.85 + 8*t^6.93 + 6*t^7.01 + 6*t^7.02 + 10*t^7.1 + 4*t^7.19 + t^7.27 + t^7.69 + 5*t^7.77 + 3*t^7.78 + 11*t^7.86 + 2*t^7.87 + 8*t^7.94 + 7*t^7.95 - 2*t^8.02 + 6*t^8.03 + 2*t^8.04 + 5*t^8.12 + 2*t^8.2 + t^8.21 + t^8.28 + t^8.29 + t^8.37 + t^8.46 + t^8.61 + 2*t^8.62 + t^8.63 + 2*t^8.7 + 4*t^8.71 - t^8.78 + 11*t^8.79 + t^8.8 - 5*t^8.87 + 10*t^8.88 + 5*t^8.96 + t^8.97 - t^4.01/y - t^5.03/y - t^6.04/y - t^6.13/y - (2*t^6.89)/y - (2*t^6.97)/y - (2*t^7.06)/y + t^7.9/y + (3*t^7.99)/y + t^8.07/y - t^8.24/y + t^8.75/y + (4*t^8.83)/y - t^8.91/y + (2*t^8.92)/y - t^4.01*y - t^5.03*y - t^6.04*y - t^6.13*y - 2*t^6.89*y - 2*t^6.97*y - 2*t^7.06*y + t^7.9*y + 3*t^7.99*y + t^8.07*y - t^8.24*y + t^8.75*y + 4*t^8.83*y - t^8.91*y + 2*t^8.92*y t^2.03/(g1^2*g2^2) + t^2.11/(g1^9*g2^6) + g1^10*g2^7*t^2.87 + g1^9*g2^9*t^2.88 + 2*g1^3*g2^3*t^2.96 + t^3.05/(g1^4*g2) + g1^8*g2^8*t^3.89 + (2*t^4.06)/(g1^4*g2^4) + t^4.06/(g1^5*g2^2) + t^4.14/(g1^11*g2^8) + t^4.23/(g1^18*g2^12) + 2*g1^8*g2^5*t^4.9 + 2*g1^7*g2^7*t^4.9 + 4*g1*g2*t^4.99 + 2*g2^3*t^4.99 + t^5.07/(g1^5*g2^5) + (4*t^5.07)/(g1^6*g2^3) + t^5.16/(g1^13*g2^7) + g1^20*g2^14*t^5.74 + g1^19*g2^16*t^5.75 + g1^18*g2^18*t^5.75 + 2*g1^13*g2^10*t^5.83 + 2*g1^12*g2^12*t^5.83 + 5*g1^6*g2^6*t^5.92 + g1^5*g2^8*t^5.92 - 2*t^6. - (g1*t^6.)/g2^2 + (3*g2^2*t^6.)/g1 + (2*t^6.08)/(g1^6*g2^6) + t^6.09/(g1^7*g2^4) + t^6.09/(g1^8*g2^2) + t^6.17/(g1^13*g2^10) + t^6.17/(g1^14*g2^8) + t^6.26/(g1^20*g2^14) + t^6.34/(g1^27*g2^18) + g1^18*g2^15*t^6.76 + g1^17*g2^17*t^6.76 + 2*g1^11*g2^11*t^6.85 + 3*g1^6*g2^3*t^6.93 + 3*g1^5*g2^5*t^6.93 + 2*g1^4*g2^7*t^6.93 + (6*t^7.01)/(g1*g2) + (5*g2*t^7.02)/g1^2 + (g2^3*t^7.02)/g1^3 + t^7.1/(g1^7*g2^7) + (6*t^7.1)/(g1^8*g2^5) + (3*t^7.1)/(g1^9*g2^3) + (4*t^7.19)/(g1^15*g2^9) + t^7.27/(g1^22*g2^13) + g1^24*g2^18*t^7.69 + 2*g1^18*g2^12*t^7.77 + 3*g1^17*g2^14*t^7.77 + 3*g1^16*g2^16*t^7.78 + 5*g1^11*g2^8*t^7.86 + 6*g1^10*g2^10*t^7.86 + 2*g1^9*g2^12*t^7.87 - g1^5*g2^2*t^7.94 + 9*g1^4*g2^4*t^7.94 + 7*g1^3*g2^6*t^7.95 - (2*t^8.02)/(g1*g2^4) + (8*t^8.03)/g1^3 - (2*t^8.03)/(g1^2*g2^2) + (2*g2^2*t^8.04)/g1^4 + t^8.11/(g1^8*g2^8) - t^8.11/(g1^9*g2^6) + (5*t^8.12)/(g1^10*g2^4) + t^8.2/(g1^15*g2^12) + t^8.2/(g1^16*g2^10) + t^8.21/(g1^17*g2^8) + t^8.28/(g1^22*g2^16) + t^8.29/(g1^23*g2^14) + t^8.37/(g1^29*g2^20) + t^8.46/(g1^36*g2^24) + g1^30*g2^21*t^8.61 + g1^29*g2^23*t^8.62 + g1^28*g2^25*t^8.62 + g1^27*g2^27*t^8.63 + 2*g1^23*g2^17*t^8.7 + 2*g1^22*g2^19*t^8.71 + 2*g1^21*g2^21*t^8.71 - g1^17*g2^11*t^8.78 + 5*g1^16*g2^13*t^8.79 + 6*g1^15*g2^15*t^8.79 + g1^14*g2^17*t^8.8 - g1^11*g2^5*t^8.87 - 4*g1^10*g2^7*t^8.87 + 6*g1^9*g2^9*t^8.88 + 4*g1^8*g2^11*t^8.88 - 3*g1^3*g2^3*t^8.96 + 8*g1^2*g2^5*t^8.96 + g1*g2^7*t^8.97 - t^4.01/(g1*g2*y) - t^5.03/(g1^2*g2^2*y) - t^6.04/(g1^3*g2^3*y) - t^6.13/(g1^10*g2^7*y) - (g1^9*g2^6*t^6.89)/y - (g1^8*g2^8*t^6.89)/y - (2*g1^2*g2^2*t^6.97)/y - t^7.06/(g1^4*g2^4*y) - t^7.06/(g1^5*g2^2*y) + (g1^8*g2^5*t^7.9)/y + (2*g1*g2*t^7.99)/y + (g2^3*t^7.99)/y - t^8.07/(g1^5*g2^5*y) + (2*t^8.07)/(g1^6*g2^3*y) - t^8.16/(g1^12*g2^9*y) + t^8.16/(g1^13*g2^7*y) - t^8.24/(g1^19*g2^13*y) + (g1^19*g2^16*t^8.75)/y + (2*g1^13*g2^10*t^8.83)/y + (2*g1^12*g2^12*t^8.83)/y - (g1^7*g2^4*t^8.91)/y + (g1^6*g2^6*t^8.92)/y + (g1^5*g2^8*t^8.92)/y - (t^4.01*y)/(g1*g2) - (t^5.03*y)/(g1^2*g2^2) - (t^6.04*y)/(g1^3*g2^3) - (t^6.13*y)/(g1^10*g2^7) - g1^9*g2^6*t^6.89*y - g1^8*g2^8*t^6.89*y - 2*g1^2*g2^2*t^6.97*y - (t^7.06*y)/(g1^4*g2^4) - (t^7.06*y)/(g1^5*g2^2) + g1^8*g2^5*t^7.9*y + 2*g1*g2*t^7.99*y + g2^3*t^7.99*y - (t^8.07*y)/(g1^5*g2^5) + (2*t^8.07*y)/(g1^6*g2^3) - (t^8.16*y)/(g1^12*g2^9) + (t^8.16*y)/(g1^13*g2^7) - (t^8.24*y)/(g1^19*g2^13) + g1^19*g2^16*t^8.75*y + 2*g1^13*g2^10*t^8.83*y + 2*g1^12*g2^12*t^8.83*y - g1^7*g2^4*t^8.91*y + g1^6*g2^6*t^8.92*y + g1^5*g2^8*t^8.92*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58962 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ 1.4967 1.7309 0.8647 [X:[], M:[0.9834, 0.9834, 0.6757], q:[0.5073, 0.4761], qb:[0.5093, 0.4742], phi:[0.3389]] 2*t^2.03 + t^2.85 + t^2.94 + 2*t^2.95 + t^2.96 + t^3.87 + t^3.96 + t^4.05 + t^4.06 + 2*t^4.07 + 3*t^4.88 + t^4.97 + 7*t^4.98 + 2*t^4.99 + t^5.08 + t^5.39 + t^5.4 + 2*t^5.49 + t^5.7 + 3*t^5.8 + t^5.81 + 3*t^5.89 + 5*t^5.9 + 2*t^5.91 + 2*t^5.99 - 4*t^6. - t^4.02/y - t^5.03/y - t^4.02*y - t^5.03*y detail