Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58962 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.4967 | 1.7309 | 0.8647 | [X:[], M:[0.9834, 0.9834, 0.6757], q:[0.5073, 0.4761], qb:[0.5093, 0.4742], phi:[0.3389]] | [X:[], M:[[3, 0, 3], [3, 0, 3], [-8, -1, 1]], q:[[-3, -1, -3], [9, 0, 0]], qb:[[0, 1, 0], [0, 0, 9]], phi:[[-1, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}\phi_{1}^{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ | ${}$ | -4 | 2*t^2.03 + t^2.85 + t^2.94 + 2*t^2.95 + t^2.96 + t^3.87 + t^3.96 + t^4.05 + t^4.06 + 2*t^4.07 + 3*t^4.88 + t^4.97 + 7*t^4.98 + 2*t^4.99 + t^5.08 + t^5.39 + t^5.4 + 2*t^5.49 + t^5.7 + 3*t^5.8 + t^5.81 + 3*t^5.89 + 5*t^5.9 + 2*t^5.91 + 2*t^5.99 - 4*t^6. + t^6.08 + 2*t^6.09 + 2*t^6.1 - t^6.11 + 2*t^6.41 + 2*t^6.51 + t^6.72 + 2*t^6.81 + 3*t^6.82 + 5*t^6.91 + 3*t^6.92 + 5*t^7. + 6*t^7.01 + 6*t^7.02 + t^7.32 + t^7.33 + 3*t^7.42 + t^7.43 + 3*t^7.52 + t^7.53 + t^7.62 + t^7.63 + t^7.73 + 3*t^7.74 + t^7.82 + 10*t^7.83 + 3*t^7.84 + 6*t^7.92 + 15*t^7.93 + 2*t^7.94 + 2*t^7.95 + 2*t^8.02 - 6*t^8.03 + t^8.04 + 2*t^8.11 + t^8.12 + 2*t^8.13 - 2*t^8.14 + t^8.24 + t^8.25 + t^8.33 + 3*t^8.34 + 4*t^8.35 + t^8.43 + 5*t^8.44 - t^8.54 - 2*t^8.64 + 3*t^8.65 + t^8.66 + t^8.74 + 8*t^8.75 + 2*t^8.76 + t^8.83 + 3*t^8.84 + 10*t^8.85 + 5*t^8.86 + t^8.87 + 2*t^8.93 + 4*t^8.94 - 2*t^8.95 - 7*t^8.96 - t^4.02/y - t^5.03/y - t^6.04/y - t^6.05/y - t^6.87/y - t^6.96/y - (3*t^6.97)/y - t^7.07/y + t^7.88/y + t^7.97/y + (4*t^7.98)/y + t^7.99/y - t^8.07/y - (2*t^8.08)/y + (3*t^8.8)/y + t^8.81/y + (2*t^8.89)/y + t^8.9/y + (2*t^8.91)/y - (3*t^8.99)/y - t^4.02*y - t^5.03*y - t^6.04*y - t^6.05*y - t^6.87*y - t^6.96*y - 3*t^6.97*y - t^7.07*y + t^7.88*y + t^7.97*y + 4*t^7.98*y + t^7.99*y - t^8.07*y - 2*t^8.08*y + 3*t^8.8*y + t^8.81*y + 2*t^8.89*y + t^8.9*y + 2*t^8.91*y - 3*t^8.99*y | t^2.03/(g1^2*g3^2) + (g3*t^2.03)/(g1^8*g2) + g1^9*g3^9*t^2.85 + (g3^6*t^2.94)/(g1^3*g2) + 2*g1^3*g3^3*t^2.95 + g1^9*g2*t^2.96 + g1^8*g3^8*t^3.87 + (g3^5*t^3.96)/(g1^4*g2) + (g3^2*t^4.05)/(g1^16*g2^2) + t^4.06/(g1^10*g2*g3) + (2*t^4.07)/(g1^4*g3^4) + 2*g1^7*g3^7*t^4.88 + (g1*g3^10*t^4.88)/g2 + (g3^7*t^4.97)/(g1^11*g2^2) + 3*g1*g3*t^4.98 + (4*g3^4*t^4.98)/(g1^5*g2) + (2*g1^7*g2*t^4.99)/g3^2 + t^5.08/(g1^5*g3^5) + (g2*g3^17*t^5.39)/g1 + (g1^14*t^5.4)/(g2*g3^4) + (g1^2*t^5.49)/(g2^2*g3^7) + (g2^2*g3^8*t^5.49)/g1 + g1^18*g3^18*t^5.7 + 2*g1^12*g3^12*t^5.8 + (g1^6*g3^15*t^5.8)/g2 + g1^18*g2*g3^9*t^5.81 + (2*g3^9*t^5.89)/g2 + (g3^12*t^5.89)/(g1^6*g2^2) + 5*g1^6*g3^6*t^5.9 + g1^18*g2^2*t^5.91 + g1^12*g2*g3^3*t^5.91 + (g3^3*t^5.99)/(g1^6*g2) + (g3^6*t^5.99)/(g1^12*g2^2) - 4*t^6. + (g3^3*t^6.08)/(g1^24*g2^3) + t^6.09/(g1^18*g2^2) + t^6.09/(g1^12*g2*g3^3) + (2*t^6.1)/(g1^6*g3^6) - (g2*t^6.11)/g3^9 + (g1^13*t^6.41)/(g2*g3^5) + (g2*g3^16*t^6.41)/g1^2 + (g1*t^6.51)/(g2^2*g3^8) + (g2^2*g3^7*t^6.51)/g1^2 + g1^17*g3^17*t^6.72 + (2*g1^5*g3^14*t^6.81)/g2 + g1^17*g2*g3^8*t^6.82 + 2*g1^11*g3^11*t^6.82 + (3*g3^8*t^6.91)/(g1*g2) + (2*g3^11*t^6.91)/(g1^7*g2^2) - g1^11*g2*g3^2*t^6.92 + 4*g1^5*g3^5*t^6.92 + (4*g3^5*t^7.)/(g1^13*g2^2) + (g3^8*t^7.)/(g1^19*g2^3) + (6*g3^2*t^7.01)/(g1^7*g2) + (3*g1^5*g2*t^7.02)/g3^4 + (3*t^7.02)/(g1*g3) - (g2*t^7.12)/(g1*g3^10) + t^7.12/(g1^7*g3^7) + (g3^24*t^7.32)/g1^3 + (g1^24*t^7.33)/g3^3 + (2*g2*g3^15*t^7.42)/g1^3 + (g3^18*t^7.42)/g1^9 + (2*g1^12*t^7.43)/(g2*g3^6) - g1^3*g2^2*g3^12*t^7.43 + (2*t^7.52)/(g2^2*g3^9) + t^7.52/(g1^6*g2^3*g3^6) - (g1^6*t^7.53)/(g2*g3^12) + (2*g2^2*g3^6*t^7.53)/g1^3 + t^7.62/(g1^12*g2^3*g3^12) + (g2^3*t^7.63)/(g1^3*g3^3) + (g1^10*g3^19*t^7.73)/g2 + 3*g1^16*g3^16*t^7.74 + (g3^16*t^7.82)/(g1^2*g2^2) + 4*g1^10*g3^10*t^7.83 + (6*g1^4*g3^13*t^7.83)/g2 + 3*g1^16*g2*g3^7*t^7.84 + (5*g3^10*t^7.92)/(g1^8*g2^2) + (g3^13*t^7.92)/(g1^14*g2^3) + 9*g1^4*g3^4*t^7.93 + (6*g3^7*t^7.93)/(g1^2*g2) + 2*g1^10*g2*g3*t^7.94 + (2*g1^16*g2^2*t^7.95)/g3^2 + (g3^4*t^8.02)/(g1^14*g2^2) + (g3^7*t^8.02)/(g1^20*g2^3) - (5*t^8.03)/(g1^2*g3^2) - (g3*t^8.03)/(g1^8*g2) + (g1^4*g2*t^8.04)/g3^5 + (g3*t^8.11)/(g1^26*g2^3) + (g3^4*t^8.11)/(g1^32*g2^4) + t^8.12/(g1^20*g2^2*g3^2) + (2*t^8.13)/(g1^8*g3^8) - (2*g2*t^8.14)/(g1^2*g3^11) + g1^8*g2*g3^26*t^8.24 + (g1^23*g3^5*t^8.25)/g2 + (g3^23*t^8.33)/g1^4 + (2*g1^11*g3^2*t^8.34)/g2^2 + g1^2*g2*g3^20*t^8.34 + (g1^23*t^8.35)/g3^4 + (g1^17*t^8.35)/(g2*g3) + 2*g1^8*g2^2*g3^17*t^8.35 + t^8.43/(g1*g2^3*g3) + (2*g1^11*t^8.44)/(g2*g3^7) + (g1^5*t^8.44)/(g2^2*g3^4) + (2*g2*g3^14*t^8.44)/g1^4 - (g1^17*t^8.45)/g3^10 + g1^8*g2^3*g3^8*t^8.45 - (2*g1^5*t^8.54)/(g2*g3^13) + t^8.54/(g1*g2^2*g3^10) + (g2^2*g3^5*t^8.54)/g1^4 - (g2*g3^8*t^8.54)/g1^10 - g1^2*g2^3*g3^2*t^8.55 + g1^27*g3^27*t^8.55 - t^8.64/(g1^7*g2^2*g3^16) - (g2^2*t^8.64)/(g1^10*g3) + 2*g1^21*g3^21*t^8.65 + (g1^15*g3^24*t^8.65)/g2 + g1^27*g2*g3^18*t^8.66 + (g1^3*g3^21*t^8.74)/g2^2 + 6*g1^15*g3^15*t^8.75 + (2*g1^9*g3^18*t^8.75)/g2 + g1^27*g2^2*g3^9*t^8.76 + g1^21*g2*g3^12*t^8.76 + (g3^18*t^8.83)/(g1^9*g2^3) + (3*g3^15*t^8.84)/(g1^3*g2^2) + 2*g1^9*g3^9*t^8.85 + (8*g1^3*g3^12*t^8.85)/g2 + g1^21*g2^2*g3^3*t^8.86 + 4*g1^15*g2*g3^6*t^8.86 + g1^27*g2^3*t^8.87 + (2*g3^12*t^8.93)/(g1^15*g2^3) - (g3^6*t^8.94)/(g1^3*g2) + (5*g3^9*t^8.94)/(g1^9*g2^2) - 2*g1^3*g3^3*t^8.95 - 7*g1^9*g2*t^8.96 - t^4.02/(g1*g3*y) - t^5.03/(g1^2*g3^2*y) - t^6.04/(g1^9*g2*y) - t^6.05/(g1^3*g3^3*y) - (g1^8*g3^8*t^6.87)/y - (g3^5*t^6.96)/(g1^4*g2*y) - (g1^8*g2*t^6.97)/(g3*y) - (2*g1^2*g3^2*t^6.97)/y - t^7.07/(g1^4*g3^4*y) + (g1*g3^10*t^7.88)/(g2*y) + (g3^7*t^7.97)/(g1^11*g2^2*y) + (2*g1*g3*t^7.98)/y + (2*g3^4*t^7.98)/(g1^5*g2*y) + (g1^7*g2*t^7.99)/(g3^2*y) - (g3*t^8.07)/(g1^17*g2^2*y) - t^8.08/(g1^5*g3^5*y) - t^8.08/(g1^11*g2*g3^2*y) + (2*g1^12*g3^12*t^8.8)/y + (g1^6*g3^15*t^8.8)/(g2*y) + (g1^18*g2*g3^9*t^8.81)/y + (2*g3^9*t^8.89)/(g2*y) + (g1^6*g3^6*t^8.9)/y + (2*g1^12*g2*g3^3*t^8.91)/y - (3*g3^3*t^8.99)/(g1^6*g2*y) - (t^4.02*y)/(g1*g3) - (t^5.03*y)/(g1^2*g3^2) - (t^6.04*y)/(g1^9*g2) - (t^6.05*y)/(g1^3*g3^3) - g1^8*g3^8*t^6.87*y - (g3^5*t^6.96*y)/(g1^4*g2) - (g1^8*g2*t^6.97*y)/g3 - 2*g1^2*g3^2*t^6.97*y - (t^7.07*y)/(g1^4*g3^4) + (g1*g3^10*t^7.88*y)/g2 + (g3^7*t^7.97*y)/(g1^11*g2^2) + 2*g1*g3*t^7.98*y + (2*g3^4*t^7.98*y)/(g1^5*g2) + (g1^7*g2*t^7.99*y)/g3^2 - (g3*t^8.07*y)/(g1^17*g2^2) - (t^8.08*y)/(g1^5*g3^5) - (t^8.08*y)/(g1^11*g2*g3^2) + 2*g1^12*g3^12*t^8.8*y + (g1^6*g3^15*t^8.8*y)/g2 + g1^18*g2*g3^9*t^8.81*y + (2*g3^9*t^8.89*y)/g2 + g1^6*g3^6*t^8.9*y + 2*g1^12*g2*g3^3*t^8.91*y - (3*g3^3*t^8.99*y)/(g1^6*g2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
61176 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ | 1.4818 | 1.7132 | 0.8649 | [X:[], M:[0.9862, 0.9862, 0.7049], q:[0.5729, 0.5163], qb:[0.4409, 0.4422], phi:[0.3379]] | t^2.03 + t^2.11 + t^2.87 + t^2.88 + 2*t^2.96 + t^3.05 + t^3.89 + 3*t^4.06 + t^4.14 + t^4.23 + 4*t^4.9 + 6*t^4.99 + 5*t^5.07 + t^5.16 + t^5.74 + 2*t^5.75 + 4*t^5.83 + 6*t^5.92 - t^4.01/y - t^5.03/y - t^4.01*y - t^5.03*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57648 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ | 1.4759 | 1.6899 | 0.8734 | [X:[], M:[0.9832, 0.9832], q:[0.5084, 0.4748], qb:[0.5084, 0.4748], phi:[0.3389]] | t^2.03 + t^2.85 + 4*t^2.95 + t^3.87 + 2*t^3.97 + 2*t^4.07 + 2*t^4.88 + 6*t^4.98 + t^5.08 + 2*t^5.39 + 2*t^5.49 + t^5.7 + 4*t^5.8 + 9*t^5.9 - 2*t^6. - t^4.02/y - t^5.03/y - t^4.02*y - t^5.03*y | detail |