Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61167 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}^{2}$ + ${ }q_{2}\tilde{q}_{2}X_{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}X_{1}$ 1.3755 1.6091 0.8548 [X:[1.2722, 1.3639], M:[0.8195, 1.0, 0.7176, 0.7278], q:[0.5839, 0.3219], qb:[0.5966, 0.3142], phi:[0.3639]] [X:[[0, 0, -2], [0, 0, 1]], M:[[0, 0, 5], [0, 0, 0], [-1, 1, 0], [0, 0, 2]], q:[[-1, 0, -5], [0, -1, -1]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, 1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{4}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{4}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{4}\phi_{1}^{3}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ ${}$ -3 t^2.15 + t^2.18 + t^2.46 + t^2.69 + t^2.76 + t^3. + t^3.28 + t^3.79 + 2*t^4.09 + t^4.31 + t^4.34 + t^4.37 + t^4.61 + t^4.63 + t^4.64 + 2*t^4.77 + t^4.85 + 2*t^4.88 + t^4.91 + t^4.92 + 2*t^4.94 + t^5.15 + t^5.18 + t^5.39 + t^5.43 + t^5.45 + 2*t^5.46 + t^5.51 + t^5.56 + t^5.61 + t^5.69 + t^5.72 + t^5.73 + t^5.76 + t^5.86 + t^5.87 + t^5.94 + 2*t^5.97 - 3*t^6. + t^6.03 + t^6.1 + t^6.17 + 2*t^6.24 + 3*t^6.28 - t^6.31 + t^6.46 + t^6.48 + t^6.49 + t^6.52 + t^6.54 + 4*t^6.55 + t^6.65 + t^6.71 + t^6.76 + 4*t^6.79 + t^6.83 + t^6.85 + t^6.92 + 2*t^6.95 + 2*t^6.96 - t^6.98 + t^7. + 2*t^7.03 + 4*t^7.06 + t^7.07 + 2*t^7.09 + t^7.1 + 2*t^7.12 + t^7.31 + t^7.33 + t^7.34 + 3*t^7.37 + t^7.38 + t^7.39 + t^7.46 + t^7.47 + t^7.52 + t^7.53 + t^7.54 + 3*t^7.57 + t^7.58 + 2*t^7.61 + 3*t^7.63 + 2*t^7.64 + 2*t^7.69 + t^7.71 + 2*t^7.74 + t^7.77 + 2*t^7.8 + t^7.85 + 4*t^7.88 + t^7.89 + t^7.91 + 2*t^7.92 + t^7.94 + 2*t^8.04 + 2*t^8.05 - t^8.07 + t^8.09 + 2*t^8.12 + t^8.14 + t^8.19 + 3*t^8.21 + t^8.25 + t^8.26 + t^8.27 + t^8.29 + t^8.31 + 2*t^8.32 + t^8.36 + t^8.37 + t^8.39 + 2*t^8.4 + 2*t^8.42 + 3*t^8.43 + t^8.48 - t^8.49 + t^8.51 + t^8.53 + 2*t^8.55 + 3*t^8.56 - t^8.58 - t^8.59 + 2*t^8.61 + t^8.62 + 2*t^8.63 + 2*t^8.64 + 3*t^8.66 + t^8.67 - 3*t^8.69 + 4*t^8.7 + 5*t^8.72 + 5*t^8.73 - 5*t^8.76 + t^8.79 + t^8.8 - t^8.83 + 2*t^8.84 + 2*t^8.86 + t^8.87 + 2*t^8.89 - t^8.9 + t^8.93 + 2*t^8.94 + t^8.95 + 4*t^8.97 + t^8.98 - t^4.09/y - t^5.18/y - t^6.24/y - t^6.28/y - t^6.55/y - t^6.79/y - t^6.85/y - (2*t^7.37)/y + t^7.61/y + t^7.85/y + (2*t^7.91)/y + t^7.94/y + (2*t^8.15)/y - t^8.18/y + t^8.21/y - t^8.4/y + t^8.45/y + t^8.69/y - t^8.7/y + t^8.76/y - t^4.09*y - t^5.18*y - t^6.24*y - t^6.28*y - t^6.55*y - t^6.79*y - t^6.85*y - 2*t^7.37*y + t^7.61*y + t^7.85*y + 2*t^7.91*y + t^7.94*y + 2*t^8.15*y - t^8.18*y + t^8.21*y - t^8.4*y + t^8.45*y + t^8.69*y - t^8.7*y + t^8.76*y (g2*t^2.15)/g1 + g3^2*t^2.18 + g3^5*t^2.46 + (g2*t^2.69)/(g1*g3^5) + (g1*t^2.76)/(g2*g3) + t^3. + g3^3*t^3.28 + (g2*t^3.79)/(g1*g3^4) + 2*g3*t^4.09 + (g2^2*t^4.31)/g1^2 + (g2*g3^2*t^4.34)/g1 + g3^4*t^4.37 + (g2*g3^5*t^4.61)/g1 + t^4.63/g3^4 + g3^7*t^4.64 + t^4.77/(g1*g2^2*g3^6) + g1*g2^2*g3*t^4.77 + (g2^2*t^4.85)/(g1^2*g3^5) + (2*g2*t^4.88)/(g1*g3^3) + t^4.91/g3 + g3^10*t^4.92 + (2*g1*g3*t^4.94)/g2 + (g2*t^5.15)/g1 + g3^2*t^5.18 + (g2^2*t^5.39)/(g1^2*g3^10) + (g2*g3^3*t^5.43)/g1 + t^5.45/g3^6 + 2*g3^5*t^5.46 + (g1^2*t^5.51)/(g2^2*g3^2) + t^5.56/(g1^2*g2*g3^10) + g1^2*g2*g3*t^5.61 + (g2*t^5.69)/(g1*g3^5) + t^5.72/g3^3 + g3^8*t^5.73 + (g1*t^5.76)/(g2*g3) + g1*g2^2*g3^2*t^5.86 + t^5.87/(g1*g2^2*g3^5) + (g2^2*t^5.94)/(g1^2*g3^4) + (2*g2*t^5.97)/(g1*g3^2) - 3*t^6. + (g1*g3^2*t^6.03)/g2 + g2^3*g3^3*t^6.1 + t^6.17/g2^3 + (2*g2*g3*t^6.24)/g1 + 3*g3^3*t^6.28 - (g1*g3^5*t^6.31)/g2 + (g2^3*t^6.46)/g1^3 + (g2^2*t^6.48)/(g1^2*g3^9) + (g2^2*g3^2*t^6.49)/g1^2 + (g2*g3^4*t^6.52)/g1 + t^6.54/g3^5 + 4*g3^6*t^6.55 + t^6.65/(g1^2*g2*g3^9) + g1^2*g2*g3^2*t^6.71 + (g2^2*g3^5*t^6.76)/g1^2 + (3*g2*t^6.79)/(g1*g3^4) + (g2*g3^7*t^6.79)/g1 + g3^9*t^6.83 + (g1*t^6.85)/g2 + g2^3*g3*t^6.92 + 2*g1*g2^2*g3^3*t^6.95 + (2*t^6.96)/(g1*g2^2*g3^4) - g1^2*g2*g3^5*t^6.98 + (g2^3*t^7.)/(g1^3*g3^5) + (2*g2^2*t^7.03)/(g1^2*g3^3) + (4*g2*t^7.06)/(g1*g3) + (g2*g3^10*t^7.07)/g1 + 2*g3*t^7.09 + g3^12*t^7.1 + (2*g1*g3^3*t^7.12)/g2 + (g2^2*t^7.31)/g1^2 + (g2*t^7.33)/(g1*g3^9) + (g2*g3^2*t^7.34)/g1 + 3*g3^4*t^7.37 + g3^15*t^7.38 + (g1*t^7.39)/(g2*g3^5) + (g2^3*t^7.46)/g3^4 + t^7.47/(g1^2*g2*g3^11) + g1^2*g2*t^7.52 + t^7.53/(g2^3*g3^7) + (g2^3*t^7.54)/(g1^3*g3^10) + (3*g2^2*t^7.57)/(g1^2*g3^8) + (g2^2*g3^3*t^7.58)/g1^2 + (2*g2*g3^5*t^7.61)/g1 + (3*t^7.63)/g3^4 + 2*g3^7*t^7.64 + (2*g1^2*t^7.69)/g2^2 + t^7.71/(g1^3*g3^10) + (2*t^7.74)/(g1^2*g2*g3^8) + g1*g2^2*g3*t^7.77 + 2*g1^2*g2*g3^3*t^7.8 + (g2^2*t^7.85)/(g1^2*g3^5) + (4*g2*t^7.88)/(g1*g3^3) + (g2*g3^8*t^7.89)/g1 + t^7.91/g3 + 2*g3^10*t^7.92 + (g1*g3*t^7.94)/g2 + 2*g1*g2^2*g3^4*t^8.04 + (2*t^8.05)/(g1*g2^2*g3^3) - g1^2*g2*g3^6*t^8.07 + (g2^3*t^8.08)/(g1^3*g3^15) - t^8.08/(g2^3*g3) + (g2^3*t^8.09)/(g1^3*g3^4) + (2*g2^2*t^8.12)/(g1^2*g3^2) + (g2*t^8.14)/(g1*g3^11) + g3^13*t^8.19 + (g1*t^8.21)/(g2*g3^7) + (2*g1*g3^4*t^8.21)/g2 + t^8.25/(g1^3*g3^15) + (g2^4*g3^3*t^8.26)/g1 + (g1^3*t^8.27)/(g2^3*g3^3) + g2^3*g3^5*t^8.29 + (g1*g2^2*t^8.31)/g3^4 + t^8.32/(g1*g2^2) + t^8.32/(g1*g2^2*g3^11) + (g3^2*t^8.36)/g2^3 + g1^3*t^8.37 + (g2^2*t^8.39)/(g1^2*g3^10) + (2*g2^2*g3*t^8.4)/g1^2 + (2*g2*t^8.42)/(g1*g3^8) + (3*g2*g3^3*t^8.43)/g1 + (g1*t^8.48)/(g2*g3^4) - (g1*g3^7*t^8.49)/g2 + (g1^2*t^8.51)/(g2^2*g3^2) + t^8.53/(g1^3*g3^12) + (2*g2^3*t^8.55)/g3^3 + (2*t^8.56)/(g1^2*g2*g3^10) + g2^3*g3^8*t^8.56 - (g1*g2^2*t^8.58)/g3 - t^8.59/(g1*g2^2*g3^8) + (g2^4*t^8.61)/g1^4 + g1^2*g2*g3*t^8.61 + t^8.62/(g2^3*g3^6) + (g2^3*t^8.63)/(g1^3*g3^9) + (g3^5*t^8.63)/g2^3 + (g2^3*g3^2*t^8.64)/g1^3 + g1^3*g3^3*t^8.64 + (3*g2^2*t^8.66)/(g1^2*g3^7) + (g2^2*g3^4*t^8.67)/g1^2 - (3*g2*t^8.69)/(g1*g3^5) + (4*g2*g3^6*t^8.7)/g1 + (5*t^8.72)/g3^3 + 5*g3^8*t^8.73 - (4*g1*t^8.76)/(g2*g3) - (g1*g3^10*t^8.76)/g2 + (g1^2*g3*t^8.79)/g2^2 + (g2^4*t^8.8)/(g1*g3^2) - g2^3*t^8.83 + (2*t^8.84)/(g1^2*g2*g3^7) + 2*g1*g2^2*g3^2*t^8.86 + t^8.87/(g1*g2^2*g3^5) + 2*g1^2*g2*g3^4*t^8.89 - t^8.9/(g2^3*g3^3) + (g2^3*g3^5*t^8.92)/g1^3 - g1^3*g3^6*t^8.92 + (g1*t^8.93)/(g2^4*g3) + (2*g2^2*t^8.94)/(g1^2*g3^4) + (g2^2*g3^7*t^8.95)/g1^2 + (4*g2*t^8.97)/(g1*g3^2) + (g2*g3^9*t^8.98)/g1 - (g3*t^4.09)/y - (g3^2*t^5.18)/y - (g2*g3*t^6.24)/(g1*y) - (g3^3*t^6.28)/y - (g3^6*t^6.55)/y - (g2*t^6.79)/(g1*g3^4*y) - (g1*t^6.85)/(g2*y) - (2*g3^4*t^7.37)/y + (g2*g3^5*t^7.61)/(g1*y) + (g2^2*t^7.85)/(g1^2*g3^5*y) + (2*t^7.91)/(g3*y) + (g1*g3*t^7.94)/(g2*y) + (2*g2*t^8.15)/(g1*y) - (g3^2*t^8.18)/y + (g1*g3^4*t^8.21)/(g2*y) - (g2^2*g3*t^8.4)/(g1^2*y) + t^8.45/(g3^6*y) + (g2*t^8.69)/(g1*g3^5*y) - (g2*g3^6*t^8.7)/(g1*y) + (g1*t^8.76)/(g2*g3*y) - g3*t^4.09*y - g3^2*t^5.18*y - (g2*g3*t^6.24*y)/g1 - g3^3*t^6.28*y - g3^6*t^6.55*y - (g2*t^6.79*y)/(g1*g3^4) - (g1*t^6.85*y)/g2 - 2*g3^4*t^7.37*y + (g2*g3^5*t^7.61*y)/g1 + (g2^2*t^7.85*y)/(g1^2*g3^5) + (2*t^7.91*y)/g3 + (g1*g3*t^7.94*y)/g2 + (2*g2*t^8.15*y)/g1 - g3^2*t^8.18*y + (g1*g3^4*t^8.21*y)/g2 - (g2^2*g3*t^8.4*y)/g1^2 + (t^8.45*y)/g3^6 + (g2*t^8.69*y)/(g1*g3^5) - (g2*g3^6*t^8.7*y)/g1 + (g1*t^8.76*y)/(g2*g3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58460 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}^{2}$ + ${ }q_{2}\tilde{q}_{2}X_{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ 1.3557 1.5727 0.862 [X:[1.2693, 1.3653], M:[0.8267, 1.0, 0.7201], q:[0.58, 0.3213], qb:[0.5932, 0.3133], phi:[0.3653]] t^2.16 + t^2.48 + t^2.68 + t^2.74 + t^3. + t^3.29 + t^3.78 + t^3.81 + 2*t^4.1 + t^4.32 + t^4.62 + t^4.64 + 2*t^4.76 + t^4.84 + t^4.87 + t^4.9 + t^4.94 + t^4.96 + t^5.16 + t^5.36 + t^5.42 + t^5.45 + t^5.48 + t^5.49 + t^5.54 + t^5.6 + t^5.68 + t^5.71 + t^5.74 + t^5.77 + t^5.85 + t^5.86 + t^5.94 + 2*t^5.97 - 3*t^6. - t^4.1/y - t^5.19/y - t^4.1*y - t^5.19*y detail