Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58460 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}^{2}$ + ${ }q_{2}\tilde{q}_{2}X_{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ 1.3557 1.5727 0.862 [X:[1.2693, 1.3653], M:[0.8267, 1.0, 0.7201], q:[0.58, 0.3213], qb:[0.5932, 0.3133], phi:[0.3653]] [X:[[0, 0, -2], [0, 0, 1]], M:[[0, 0, 5], [0, 0, 0], [-1, 1, 0]], q:[[-1, 0, -5], [0, -1, -1]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, 1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }M_{1}M_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}X_{1}$ ${}$ -3 t^2.16 + t^2.48 + t^2.68 + t^2.74 + t^3. + t^3.29 + t^3.78 + t^3.81 + 2*t^4.1 + t^4.32 + t^4.62 + t^4.64 + 2*t^4.76 + t^4.84 + t^4.87 + t^4.9 + t^4.94 + t^4.96 + t^5.16 + t^5.36 + t^5.42 + t^5.45 + t^5.48 + t^5.49 + t^5.54 + t^5.6 + t^5.68 + t^5.71 + t^5.74 + t^5.77 + t^5.85 + t^5.86 + t^5.94 + 2*t^5.97 - 3*t^6. + t^6.03 + t^6.11 + t^6.18 + 2*t^6.26 + 2*t^6.29 - t^6.32 + t^6.46 + t^6.48 + t^6.49 + t^6.52 + t^6.55 + 3*t^6.58 + t^6.64 + t^6.69 + 3*t^6.78 + t^6.8 + t^6.84 + t^6.92 + t^6.95 + t^6.96 - t^6.98 + t^7. + t^7.03 + 2*t^7.06 + 2*t^7.1 + t^7.12 + t^7.3 + t^7.32 + t^7.36 + 2*t^7.38 + 3*t^7.44 + t^7.5 + t^7.51 + t^7.52 + 2*t^7.55 + t^7.58 + t^7.61 + 3*t^7.62 + t^7.64 + t^7.68 + t^7.7 + t^7.73 + t^7.76 + t^7.79 + t^7.84 + 3*t^7.87 + 2*t^7.9 + t^7.93 + t^7.96 + 2*t^8.04 + t^8.05 - 2*t^8.08 + 2*t^8.1 + 2*t^8.13 - 2*t^8.16 + t^8.17 + 3*t^8.19 + 2*t^8.22 + t^8.23 + t^8.25 + t^8.27 + 2*t^8.28 + 2*t^8.34 + t^8.36 + 2*t^8.39 + 3*t^8.42 + 2*t^8.45 + t^8.46 - 3*t^8.48 + t^8.49 + t^8.51 + 2*t^8.53 + 2*t^8.54 + t^8.59 + 2*t^8.6 + t^8.62 + t^8.63 + t^8.64 + 3*t^8.65 + t^8.66 - 2*t^8.68 + 5*t^8.71 + 2*t^8.77 + t^8.78 + t^8.79 - t^8.8 - t^8.82 + t^8.83 + 2*t^8.85 + t^8.86 + t^8.88 - t^8.89 + 2*t^8.94 + t^8.96 + 2*t^8.97 - t^4.1/y - t^5.19/y - t^6.26/y - t^6.58/y - t^6.78/y - t^6.84/y - t^7.35/y - t^7.38/y + t^7.64/y - t^7.67/y + t^7.84/y - t^7.87/y + t^7.9/y + (2*t^8.16)/y - (2*t^8.19)/y + t^8.22/y + t^8.45/y + t^8.68/y + t^8.77/y + t^8.97/y - t^4.1*y - t^5.19*y - t^6.26*y - t^6.58*y - t^6.78*y - t^6.84*y - t^7.35*y - t^7.38*y + t^7.64*y - t^7.67*y + t^7.84*y - t^7.87*y + t^7.9*y + 2*t^8.16*y - 2*t^8.19*y + t^8.22*y + t^8.45*y + t^8.68*y + t^8.77*y + t^8.97*y (g2*t^2.16)/g1 + g3^5*t^2.48 + (g2*t^2.68)/(g1*g3^5) + (g1*t^2.74)/(g2*g3) + t^3. + g3^3*t^3.29 + (g2*t^3.78)/(g1*g3^4) + t^3.81/g3^2 + 2*g3*t^4.1 + (g2^2*t^4.32)/g1^2 + t^4.62/g3^4 + (g2*g3^5*t^4.64)/g1 + t^4.76/(g1*g2^2*g3^6) + g1*g2^2*g3*t^4.76 + (g2^2*t^4.84)/(g1^2*g3^5) + (g2*t^4.87)/(g1*g3^3) + t^4.9/g3 + (g1*g3*t^4.94)/g2 + g3^10*t^4.96 + (g2*t^5.16)/g1 + (g2^2*t^5.36)/(g1^2*g3^10) + t^5.42/g3^6 + (g2*g3^3*t^5.45)/g1 + g3^5*t^5.48 + (g1^2*t^5.49)/(g2^2*g3^2) + t^5.54/(g1^2*g2*g3^10) + g1^2*g2*g3*t^5.6 + (g2*t^5.68)/(g1*g3^5) + t^5.71/g3^3 + (g1*t^5.74)/(g2*g3) + g3^8*t^5.77 + g1*g2^2*g3^2*t^5.85 + t^5.86/(g1*g2^2*g3^5) + (g2^2*t^5.94)/(g1^2*g3^4) + (2*g2*t^5.97)/(g1*g3^2) - 3*t^6. + (g1*g3^2*t^6.03)/g2 + g2^3*g3^3*t^6.11 + t^6.18/g2^3 + (2*g2*g3*t^6.26)/g1 + 2*g3^3*t^6.29 - (g1*g3^5*t^6.32)/g2 + (g2^2*t^6.46)/(g1^2*g3^9) + (g2^3*t^6.48)/g1^3 + (g2*t^6.49)/(g1*g3^7) + t^6.52/g3^5 + (g1*t^6.55)/(g2*g3^3) + 3*g3^6*t^6.58 + t^6.64/(g1^2*g2*g3^9) + g1^2*g2*g3^2*t^6.69 + (3*g2*t^6.78)/(g1*g3^4) + (g2^2*g3^5*t^6.8)/g1^2 + (g1*t^6.84)/g2 + g2^3*g3*t^6.92 + g1*g2^2*g3^3*t^6.95 + t^6.96/(g1*g2^2*g3^4) - g1^2*g2*g3^5*t^6.98 + (g2^3*t^7.)/(g1^3*g3^5) + (g2^2*t^7.03)/(g1^2*g3^3) + (2*g2*t^7.06)/(g1*g3) + 2*g3*t^7.1 + (g2*g3^10*t^7.12)/g1 + (g2*t^7.3)/(g1*g3^9) + (g2^2*t^7.32)/g1^2 + (g1*t^7.36)/(g2*g3^5) + 2*g3^4*t^7.38 + t^7.44/(g1^2*g2*g3^11) + (g2^3*t^7.44)/g3^4 + g3^15*t^7.44 + g1^2*g2*t^7.5 + t^7.51/(g2^3*g3^7) + (g2^3*t^7.52)/(g1^3*g3^10) + (2*g2^2*t^7.55)/(g1^2*g3^8) + (g2*t^7.58)/(g1*g3^6) + (g2^2*g3^3*t^7.61)/g1^2 + (3*t^7.62)/g3^4 + (g2*g3^5*t^7.64)/g1 + (g1^2*t^7.68)/g2^2 + t^7.7/(g1^3*g3^10) + t^7.73/(g1^2*g2*g3^8) + g1*g2^2*g3*t^7.76 + g1^2*g2*g3^3*t^7.79 + (g2^2*t^7.84)/(g1^2*g3^5) + (3*g2*t^7.87)/(g1*g3^3) + (2*t^7.9)/g3 + (g2*g3^8*t^7.93)/g1 + g3^10*t^7.96 + (g2^3*t^8.04)/(g1^3*g3^15) + g1*g2^2*g3^4*t^8.04 + t^8.05/(g1*g2^2*g3^3) - t^8.08/(g2^3*g3) - g1^2*g2*g3^6*t^8.08 + (g2*t^8.1)/(g1*g3^11) + (g2^3*t^8.1)/(g1^3*g3^4) + (2*g2^2*t^8.13)/(g1^2*g3^2) - (2*g2*t^8.16)/g1 + (g1*t^8.17)/(g2*g3^7) + 3*g3^2*t^8.19 + t^8.22/(g1^3*g3^15) + (g1*g3^4*t^8.22)/g2 + (g1^3*t^8.23)/(g2^3*g3^3) + g3^13*t^8.25 + (g2^4*g3^3*t^8.27)/g1 + t^8.28/(g1*g2^2*g3^11) + (g1*g2^2*t^8.28)/g3^4 + g1^3*t^8.34 + t^8.34/(g1*g2^2) + (g2^2*t^8.36)/(g1^2*g3^10) + (2*g2*t^8.39)/(g1*g3^8) + t^8.42/g3^6 + (2*g2^2*g3*t^8.42)/g1^2 + (2*g2*g3^3*t^8.45)/g1 + (g1*t^8.46)/(g2*g3^4) - 3*g3^5*t^8.48 + (g1^2*t^8.49)/(g2^2*g3^2) + t^8.51/(g1^3*g3^12) + (2*g2^3*t^8.53)/g3^3 + (2*t^8.54)/(g1^2*g2*g3^10) + g2^3*g3^8*t^8.59 + t^8.6/(g2^3*g3^6) + g1^2*g2*g3*t^8.6 + (g2^3*t^8.62)/(g1^3*g3^9) + g1^3*g3^3*t^8.63 + (g2^4*t^8.64)/g1^4 + (3*g2^2*t^8.65)/(g1^2*g3^7) + (g3^5*t^8.66)/g2^3 - (2*g2*t^8.68)/(g1*g3^5) + (5*t^8.71)/g3^3 - (3*g1*t^8.74)/(g2*g3) + (3*g2*g3^6*t^8.74)/g1 + 2*g3^8*t^8.77 + (g1^2*g3*t^8.78)/g2^2 + (g2^4*t^8.79)/(g1*g3^2) - (g1*g3^10*t^8.8)/g2 - g2^3*t^8.82 + t^8.83/(g1^2*g2*g3^7) + 2*g1*g2^2*g3^2*t^8.85 + t^8.86/(g1*g2^2*g3^5) + g1^2*g2*g3^4*t^8.88 - t^8.89/(g2^3*g3^3) + (g1*t^8.92)/(g2^4*g3) - g1^3*g3^6*t^8.92 + (2*g2^2*t^8.94)/(g1^2*g3^4) + (g2^3*g3^5*t^8.96)/g1^3 + (2*g2*t^8.97)/(g1*g3^2) - (g3*t^4.1)/y - (g3^2*t^5.19)/y - (g2*g3*t^6.26)/(g1*y) - (g3^6*t^6.58)/y - (g2*t^6.78)/(g1*g3^4*y) - (g1*t^6.84)/(g2*y) - (g2*g3^2*t^7.35)/(g1*y) - (g3^4*t^7.38)/y + (g2*g3^5*t^7.64)/(g1*y) - (g3^7*t^7.67)/y + (g2^2*t^7.84)/(g1^2*g3^5*y) - (g2*t^7.87)/(g1*g3^3*y) + t^7.9/(g3*y) + (2*g2*t^8.16)/(g1*y) - (2*g3^2*t^8.19)/y + (g1*g3^4*t^8.22)/(g2*y) + t^8.42/(g3^6*y) - (g2^2*g3*t^8.42)/(g1^2*y) + (g2*g3^3*t^8.45)/(g1*y) + (g2*t^8.68)/(g1*g3^5*y) + (g1*t^8.74)/(g2*g3*y) - (g2*g3^6*t^8.74)/(g1*y) + (g3^8*t^8.77)/y + (g2*t^8.97)/(g1*g3^2*y) - g3*t^4.1*y - g3^2*t^5.19*y - (g2*g3*t^6.26*y)/g1 - g3^6*t^6.58*y - (g2*t^6.78*y)/(g1*g3^4) - (g1*t^6.84*y)/g2 - (g2*g3^2*t^7.35*y)/g1 - g3^4*t^7.38*y + (g2*g3^5*t^7.64*y)/g1 - g3^7*t^7.67*y + (g2^2*t^7.84*y)/(g1^2*g3^5) - (g2*t^7.87*y)/(g1*g3^3) + (t^7.9*y)/g3 + (2*g2*t^8.16*y)/g1 - 2*g3^2*t^8.19*y + (g1*g3^4*t^8.22*y)/g2 + (t^8.42*y)/g3^6 - (g2^2*g3*t^8.42*y)/g1^2 + (g2*g3^3*t^8.45*y)/g1 + (g2*t^8.68*y)/(g1*g3^5) + (g1*t^8.74*y)/(g2*g3) - (g2*g3^6*t^8.74*y)/g1 + g3^8*t^8.77*y + (g2*t^8.97*y)/(g1*g3^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
61167 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}^{2}$ + ${ }q_{2}\tilde{q}_{2}X_{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}X_{1}$ 1.3755 1.6091 0.8548 [X:[1.2722, 1.3639], M:[0.8195, 1.0, 0.7176, 0.7278], q:[0.5839, 0.3219], qb:[0.5966, 0.3142], phi:[0.3639]] t^2.15 + t^2.18 + t^2.46 + t^2.69 + t^2.76 + t^3. + t^3.28 + t^3.79 + 2*t^4.09 + t^4.31 + t^4.34 + t^4.37 + t^4.61 + t^4.63 + t^4.64 + 2*t^4.77 + t^4.85 + 2*t^4.88 + t^4.91 + t^4.92 + 2*t^4.94 + t^5.15 + t^5.18 + t^5.39 + t^5.43 + t^5.45 + 2*t^5.46 + t^5.51 + t^5.56 + t^5.61 + t^5.69 + t^5.72 + t^5.73 + t^5.76 + t^5.86 + t^5.87 + t^5.94 + 2*t^5.97 - 3*t^6. - t^4.09/y - t^5.18/y - t^4.09*y - t^5.18*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57369 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}^{2}$ + ${ }q_{2}\tilde{q}_{2}X_{2}$ 1.3358 1.5358 0.8698 [X:[1.2666, 1.3667], M:[0.8335, 1.0], q:[0.5832, 0.3166], qb:[0.5832, 0.3166], phi:[0.3667]] t^2.501 + 2*t^2.7 + t^3. + t^3.3 + 3*t^3.8 + 2*t^4.1 + t^4.6 + 2*t^4.75 + 2*t^4.9 + t^5.001 + 3*t^5.399 + t^5.501 + 2*t^5.55 + 3*t^5.7 + t^5.801 + 2*t^5.85 - t^6. - t^4.1/y - t^5.2/y - t^4.1*y - t^5.2*y detail