Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
61158 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }M_{4}\phi_{1}^{2}q_{1}\tilde{q}_{1}$ | 1.2342 | 1.4933 | 0.8265 | [X:[1.5712], M:[1.1425, 0.8575, 0.8575, 0.7137], q:[0.2144, 0.4993], qb:[0.2144, 0.4993], phi:[0.4288]] | [X:[[0, 0, 1]], M:[[0, 0, 2], [-1, 1, -6], [1, -1, 2], [0, 0, 3]], q:[[-1, 0, -1], [0, -1, 7]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{1}\tilde{q}_{2}$, ${ }M_{4}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{4}$, ${ }M_{3}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}^{3}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{3}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ | ${}M_{1}M_{2}$, ${ }M_{1}M_{3}$, ${ }M_{4}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ | 1 | 3*t^2.14 + 3*t^2.57 + t^3. + t^3.43 + t^3.86 + 2*t^4.07 + 7*t^4.28 + 12*t^4.71 + 2*t^4.93 + 3*t^5.14 + 4*t^5.15 + 2*t^5.36 + 7*t^5.57 + 2*t^5.79 + t^5.99 + t^6. + 8*t^6.21 + 14*t^6.42 + t^6.43 + 6*t^6.64 + 27*t^6.85 + 6*t^7.07 + 7*t^7.28 + 18*t^7.29 + 10*t^7.5 + 21*t^7.71 + 3*t^7.72 + 2*t^7.92 + 4*t^7.93 + 3*t^8.13 + 8*t^8.14 + 22*t^8.35 + 4*t^8.36 + 29*t^8.56 - 8*t^8.57 + 20*t^8.78 + t^8.99 - t^4.29/y - t^5.57/y - (3*t^6.43)/y - (2*t^6.86)/y + (2*t^7.28)/y + (8*t^7.71)/y + (3*t^8.14)/y - t^4.29*y - t^5.57*y - 3*t^6.43*y - 2*t^6.86*y + 2*t^7.28*y + 8*t^7.71*y + 3*t^8.14*y | (g2*t^2.14)/(g1*g3) + g3^3*t^2.14 + (g1*g3^7*t^2.14)/g2 + (g2*t^2.57)/(g1*g3^6) + t^2.57/g3^2 + (g1*g3^2*t^2.57)/g2 + g3^7*t^3. + g3^2*t^3.43 + t^3.86/g3^3 + (g1^2*g2*t^4.07)/g3 + (g3^4*t^4.07)/(g1^2*g2) + (g2^2*t^4.28)/(g1^2*g3^2) + (g2*g3^2*t^4.28)/g1 + 3*g3^6*t^4.28 + (g1*g3^10*t^4.28)/g2 + (g1^2*g3^14*t^4.28)/g2^2 + (g2^2*t^4.71)/(g1^2*g3^7) + (3*g2*t^4.71)/(g1*g3^3) + 4*g3*t^4.71 + (3*g1*g3^5*t^4.71)/g2 + (g1^2*g3^9*t^4.71)/g2^2 + (g1*g2^2*t^4.93)/g3 + (g3^12*t^4.93)/(g1*g2^2) + (g2*g3^6*t^5.14)/g1 + g3^10*t^5.14 + (g1*g3^14*t^5.14)/g2 + (g2^2*t^5.15)/(g1^2*g3^12) + (2*t^5.15)/g3^4 + (g1^2*g3^4*t^5.15)/g2^2 + (g1^2*g2*t^5.36)/g3^2 + (g3^3*t^5.36)/(g1^2*g2) + (2*g2*g3*t^5.57)/g1 + 3*g3^5*t^5.57 + (2*g1*g3^9*t^5.57)/g2 + t^5.79/(g1^3*g3^6) + (g1^3*t^5.79)/g3^3 + g3^14*t^5.99 - 3*t^6. + (2*g2*t^6.)/(g1*g3^4) + (2*g1*g3^4*t^6.)/g2 + (2*g1*g2^2*t^6.21)/g3^2 + g1^2*g2*g3^2*t^6.21 + (g3^3*t^6.21)/g1^3 + g1^3*g3^6*t^6.21 + (g3^7*t^6.21)/(g1^2*g2) + (2*g3^11*t^6.21)/(g1*g2^2) + (g2^3*t^6.42)/(g1^3*g3^3) + (g2^2*g3*t^6.42)/g1^2 + (3*g2*g3^5*t^6.42)/g1 + 4*g3^9*t^6.42 + (3*g1*g3^13*t^6.42)/g2 + (g1^2*g3^17*t^6.42)/g2^2 + (g1^3*g3^21*t^6.42)/g2^3 + t^6.43/g3^5 + (2*g1^2*g2*t^6.64)/g3^3 + t^6.64/(g1^3*g3^2) + g1^3*g3*t^6.64 + (2*g3^2*t^6.64)/(g1^2*g2) + (5*g2*t^6.85)/g1 + (g2^3*t^6.85)/(g1^3*g3^8) + (3*g2^2*t^6.85)/(g1^2*g3^4) + 9*g3^4*t^6.85 + (5*g1*g3^8*t^6.85)/g2 + (3*g1^2*g3^12*t^6.85)/g2^2 + (g1^3*g3^16*t^6.85)/g2^3 - (g1^2*g2*t^7.07)/g3^8 - t^7.07/(g1^2*g2*g3^3) + (g2^3*t^7.07)/g3^2 + g1*g2^2*g3^2*t^7.07 + 2*g1^2*g2*g3^6*t^7.07 + (2*g3^11*t^7.07)/(g1^2*g2) + (g3^15*t^7.07)/(g1*g2^2) + (g3^19*t^7.07)/g2^3 + (g2^2*g3^5*t^7.28)/g1^2 + (g2*g3^9*t^7.28)/g1 + 3*g3^13*t^7.28 + (g1*g3^17*t^7.28)/g2 + (g1^2*g3^21*t^7.28)/g2^2 + (g2^3*t^7.29)/(g1^3*g3^13) + (2*g2^2*t^7.29)/(g1^2*g3^9) + (5*g2*t^7.29)/(g1*g3^5) + (2*t^7.29)/g3 + (5*g1*g3^3*t^7.29)/g2 + (2*g1^2*g3^7*t^7.29)/g2^2 + (g1^3*g3^11*t^7.29)/g2^3 + (g2^3*t^7.5)/g3^7 + (2*g1*g2^2*t^7.5)/g3^3 + g1^2*g2*g3*t^7.5 + (g3^2*t^7.5)/g1^3 + g1^3*g3^5*t^7.5 + (g3^6*t^7.5)/(g1^2*g2) + (2*g3^10*t^7.5)/(g1*g2^2) + (g3^14*t^7.5)/g2^3 + (2*g2^2*t^7.71)/g1^2 + (5*g2*g3^4*t^7.71)/g1 + 7*g3^8*t^7.71 + (5*g1*g3^12*t^7.71)/g2 + (2*g1^2*g3^16*t^7.71)/g2^2 + (g2^3*t^7.72)/(g1^3*g3^18) + t^7.72/g3^6 + (g1^3*g3^6*t^7.72)/g2^3 + g1*g2^2*g3^6*t^7.92 + (g3^19*t^7.92)/(g1*g2^2) - (g1*g2^2*t^7.93)/g3^8 + (g2*t^7.93)/(g1^4*g3^7) + (2*g1^2*g2*t^7.93)/g3^4 + (2*g3*t^7.93)/(g1^2*g2) + (g1^4*g3^4*t^7.93)/g2 - (g3^5*t^7.93)/(g1*g2^2) + (g2*g3^13*t^8.13)/g1 + g3^17*t^8.13 + (g1*g3^21*t^8.13)/g2 + (3*g2^2*t^8.14)/(g1^2*g3^5) + (g1^4*g2^2*t^8.14)/g3^2 - (2*g2*t^8.14)/(g1*g3) + 4*g3^3*t^8.14 - (2*g1*g3^7*t^8.14)/g2 + (g3^8*t^8.14)/(g1^4*g2^2) + (3*g1^2*g3^11*t^8.14)/g2^2 + (3*g2^3*t^8.35)/g3^3 + 2*g1*g2^2*g3*t^8.35 + (g2*g3^2*t^8.35)/g1^4 + 4*g1^2*g2*g3^5*t^8.35 + (g3^6*t^8.35)/g1^3 + g1^3*g3^9*t^8.35 + (4*g3^10*t^8.35)/(g1^2*g2) + (g1^4*g3^13*t^8.35)/g2 + (2*g3^14*t^8.35)/(g1*g2^2) + (3*g3^18*t^8.35)/g2^3 + (g2*t^8.36)/(g1^4*g3^12) + t^8.36/(g1^3*g3^8) + (g1^3*t^8.36)/g3^5 + (g1^4*t^8.36)/(g2*g3) + (g2^3*t^8.56)/g1^3 + (g2^4*t^8.56)/(g1^4*g3^4) + (3*g2^2*g3^4*t^8.56)/g1^2 + (5*g2*g3^8*t^8.56)/g1 + 9*g3^12*t^8.56 + (5*g1*g3^16*t^8.56)/g2 + (3*g1^2*g3^20*t^8.56)/g2^2 + (g1^3*g3^24*t^8.56)/g2^3 + (g1^4*g3^28*t^8.56)/g2^4 + (g2^2*t^8.57)/(g1^2*g3^10) - (3*g2*t^8.57)/(g1*g3^6) - (4*t^8.57)/g3^2 - (3*g1*g3^2*t^8.57)/g2 + (g1^2*g3^6*t^8.57)/g2^2 + 2*g1^2*g2*t^8.78 + (3*g1*g2^2*t^8.78)/g3^4 + (g2*t^8.78)/(g1^4*g3^3) + (4*g3*t^8.78)/g1^3 + 4*g1^3*g3^4*t^8.78 + (2*g3^5*t^8.78)/(g1^2*g2) + (g1^4*g3^8*t^8.78)/g2 + (3*g3^9*t^8.78)/(g1*g2^2) + g3^21*t^8.99 - t^4.29/(g3*y) - t^5.57/(g3^2*y) - (g2*t^6.43)/(g1*g3^2*y) - (g3^2*t^6.43)/y - (g1*g3^6*t^6.43)/(g2*y) - (g2*t^6.86)/(g1*g3^7*y) - (g1*g3*t^6.86)/(g2*y) + (g2*g3^2*t^7.28)/(g1*y) + (g1*g3^10*t^7.28)/(g2*y) + (g2^2*t^7.71)/(g1^2*g3^7*y) + (2*g2*t^7.71)/(g1*g3^3*y) + (2*g3*t^7.71)/y + (2*g1*g3^5*t^7.71)/(g2*y) + (g1^2*g3^9*t^7.71)/(g2^2*y) + (g2*g3^6*t^8.14)/(g1*y) + (g3^10*t^8.14)/y + (g1*g3^14*t^8.14)/(g2*y) - (g2^2*t^8.57)/(g1^2*g3^3*y) + (g2*g3*t^8.57)/(g1*y) + (g1*g3^9*t^8.57)/(g2*y) - (g1^2*g3^13*t^8.57)/(g2^2*y) - (t^4.29*y)/g3 - (t^5.57*y)/g3^2 - (g2*t^6.43*y)/(g1*g3^2) - g3^2*t^6.43*y - (g1*g3^6*t^6.43*y)/g2 - (g2*t^6.86*y)/(g1*g3^7) - (g1*g3*t^6.86*y)/g2 + (g2*g3^2*t^7.28*y)/g1 + (g1*g3^10*t^7.28*y)/g2 + (g2^2*t^7.71*y)/(g1^2*g3^7) + (2*g2*t^7.71*y)/(g1*g3^3) + 2*g3*t^7.71*y + (2*g1*g3^5*t^7.71*y)/g2 + (g1^2*g3^9*t^7.71*y)/g2^2 + (g2*g3^6*t^8.14*y)/g1 + g3^10*t^8.14*y + (g1*g3^14*t^8.14*y)/g2 - (g2^2*t^8.57*y)/(g1^2*g3^3) + (g2*g3*t^8.57*y)/g1 + (g1*g3^9*t^8.57*y)/g2 - (g1^2*g3^13*t^8.57*y)/g2^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
59503 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ | 1.214 | 1.4546 | 0.8346 | [X:[1.5723], M:[1.1445, 0.8555, 0.8555], q:[0.2139, 0.5029], qb:[0.2139, 0.5029], phi:[0.4277]] | 2*t^2.15 + 3*t^2.57 + t^3.02 + t^3.43 + 2*t^3.85 + 2*t^4.08 + 4*t^4.3 + 9*t^4.72 + 2*t^4.94 + 4*t^5.13 + 2*t^5.17 + 2*t^5.36 + 6*t^5.58 + 2*t^5.77 + 2*t^6. - t^4.28/y - t^5.57/y - t^4.28*y - t^5.57*y | detail |