Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
59503 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ | 1.214 | 1.4546 | 0.8346 | [X:[1.5723], M:[1.1445, 0.8555, 0.8555], q:[0.2139, 0.5029], qb:[0.2139, 0.5029], phi:[0.4277]] | [X:[[0, 0, 1]], M:[[0, 0, 2], [-1, 1, -6], [1, -1, 2]], q:[[-1, 0, -1], [0, -1, 7]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{4}$, ${ }M_{3}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}^{3}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{3}$ | ${}M_{1}M_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ | 2 | 2*t^2.15 + 3*t^2.57 + t^3.02 + t^3.43 + 2*t^3.85 + 2*t^4.08 + 4*t^4.3 + 9*t^4.72 + 2*t^4.94 + 4*t^5.13 + 2*t^5.17 + 2*t^5.36 + 6*t^5.58 + 2*t^5.77 + 2*t^6. + t^6.04 + 6*t^6.23 + 4*t^6.42 + 7*t^6.45 + 6*t^6.64 + 16*t^6.87 - 2*t^7.06 + 6*t^7.09 + 15*t^7.28 + 4*t^7.32 + 8*t^7.51 + 5*t^7.7 + 14*t^7.73 + 4*t^7.92 + 2*t^7.96 + 11*t^8.15 + 2*t^8.19 + 4*t^8.34 + 14*t^8.38 + 15*t^8.6 + 16*t^8.79 + 3*t^8.98 - t^4.28/y - t^5.57/y - (2*t^6.43)/y - (2*t^6.85)/y + (6*t^7.72)/y - t^8.13/y + (2*t^8.17)/y + (2*t^8.58)/y - t^4.28*y - t^5.57*y - 2*t^6.43*y - 2*t^6.85*y + 6*t^7.72*y - t^8.13*y + 2*t^8.17*y + 2*t^8.58*y | (g2*t^2.15)/(g1*g3) + (g1*g3^7*t^2.15)/g2 + (g2*t^2.57)/(g1*g3^6) + t^2.57/g3^2 + (g1*g3^2*t^2.57)/g2 + g3^7*t^3.02 + g3^2*t^3.43 + (2*t^3.85)/g3^3 + (g1^2*g2*t^4.08)/g3 + (g3^4*t^4.08)/(g1^2*g2) + (g2^2*t^4.3)/(g1^2*g3^2) + 2*g3^6*t^4.3 + (g1^2*g3^14*t^4.3)/g2^2 + (g2^2*t^4.72)/(g1^2*g3^7) + (2*g2*t^4.72)/(g1*g3^3) + 3*g3*t^4.72 + (2*g1*g3^5*t^4.72)/g2 + (g1^2*g3^9*t^4.72)/g2^2 + (g1*g2^2*t^4.94)/g3 + (g3^12*t^4.94)/(g1*g2^2) + (g2^2*t^5.13)/(g1^2*g3^12) + (2*t^5.13)/g3^4 + (g1^2*g3^4*t^5.13)/g2^2 + (g2*g3^6*t^5.17)/g1 + (g1*g3^14*t^5.17)/g2 + (g1^2*g2*t^5.36)/g3^2 + (g3^3*t^5.36)/(g1^2*g2) + (2*g2*g3*t^5.58)/g1 + 2*g3^5*t^5.58 + (2*g1*g3^9*t^5.58)/g2 + t^5.77/(g1^3*g3^6) + (g1^3*t^5.77)/g3^3 - 4*t^6. + (3*g2*t^6.)/(g1*g3^4) + (3*g1*g3^4*t^6.)/g2 + g3^14*t^6.04 + (2*g1*g2^2*t^6.23)/g3^2 + (g3^3*t^6.23)/g1^3 + g1^3*g3^6*t^6.23 + (2*g3^11*t^6.23)/(g1*g2^2) + (g2*t^6.42)/(g1*g3^9) + (2*t^6.42)/g3^5 + (g1*t^6.42)/(g2*g3) + (g2^3*t^6.45)/(g1^3*g3^3) + (2*g2*g3^5*t^6.45)/g1 + g3^9*t^6.45 + (2*g1*g3^13*t^6.45)/g2 + (g1^3*g3^21*t^6.45)/g2^3 + (2*g1^2*g2*t^6.64)/g3^3 + t^6.64/(g1^3*g3^2) + g1^3*g3*t^6.64 + (2*g3^2*t^6.64)/(g1^2*g2) + (2*g2*t^6.87)/g1 + (g2^3*t^6.87)/(g1^3*g3^8) + (2*g2^2*t^6.87)/(g1^2*g3^4) + 6*g3^4*t^6.87 + (2*g1*g3^8*t^6.87)/g2 + (2*g1^2*g3^12*t^6.87)/g2^2 + (g1^3*g3^16*t^6.87)/g2^3 - (g1^2*g2*t^7.06)/g3^8 - t^7.06/(g1^2*g2*g3^3) + (g2^3*t^7.09)/g3^2 + 2*g1^2*g2*g3^6*t^7.09 + (2*g3^11*t^7.09)/(g1^2*g2) + (g3^19*t^7.09)/g2^3 + (g2^3*t^7.28)/(g1^3*g3^13) + (g2^2*t^7.28)/(g1^2*g3^9) + (5*g2*t^7.28)/(g1*g3^5) + t^7.28/g3 + (5*g1*g3^3*t^7.28)/g2 + (g1^2*g3^7*t^7.28)/g2^2 + (g1^3*g3^11*t^7.28)/g2^3 + (g2^2*g3^5*t^7.32)/g1^2 + 2*g3^13*t^7.32 + (g1^2*g3^21*t^7.32)/g2^2 + (g2^3*t^7.51)/g3^7 + (2*g1*g2^2*t^7.51)/g3^3 + (g3^2*t^7.51)/g1^3 + g1^3*g3^5*t^7.51 + (2*g3^10*t^7.51)/(g1*g2^2) + (g3^14*t^7.51)/g2^3 + (g2^3*t^7.7)/(g1^3*g3^18) + (3*t^7.7)/g3^6 + (g1^3*g3^6*t^7.7)/g2^3 + (2*g2^2*t^7.73)/g1^2 + (3*g2*g3^4*t^7.73)/g1 + 4*g3^8*t^7.73 + (3*g1*g3^12*t^7.73)/g2 + (2*g1^2*g3^16*t^7.73)/g2^2 - g1^3*t^7.92 - (g1*g2^2*t^7.92)/g3^8 + (g2*t^7.92)/(g1^4*g3^7) + (3*g1^2*g2*t^7.92)/g3^4 - t^7.92/(g1^3*g3^3) + (3*g3*t^7.92)/(g1^2*g2) + (g1^4*g3^4*t^7.92)/g2 - (g3^5*t^7.92)/(g1*g2^2) + g1*g2^2*g3^6*t^7.96 + (g3^19*t^7.96)/(g1*g2^2) + (4*g2^2*t^8.15)/(g1^2*g3^5) + (g1^4*g2^2*t^8.15)/g3^2 - (4*g2*t^8.15)/(g1*g3) + 9*g3^3*t^8.15 - (4*g1*g3^7*t^8.15)/g2 + (g3^8*t^8.15)/(g1^4*g2^2) + (4*g1^2*g3^11*t^8.15)/g2^2 + (g2*g3^13*t^8.19)/g1 + (g1*g3^21*t^8.19)/g2 + (g2*t^8.34)/(g1^4*g3^12) + t^8.34/(g1^3*g3^8) + (g1^3*t^8.34)/g3^5 + (g1^4*t^8.34)/(g2*g3) + (3*g2^3*t^8.38)/g3^3 + (g2*g3^2*t^8.38)/g1^4 + 3*g1^2*g2*g3^5*t^8.38 + (3*g3^10*t^8.38)/(g1^2*g2) + (g1^4*g3^13*t^8.38)/g2 + (3*g3^18*t^8.38)/g2^3 + (2*g2^2*t^8.57)/(g1^2*g3^10) - (g2*t^8.57)/(g1*g3^6) - (2*t^8.57)/g3^2 - (g1*g3^2*t^8.57)/g2 + (2*g1^2*g3^6*t^8.57)/g2^2 + (g2^4*t^8.6)/(g1^4*g3^4) + (2*g2^2*g3^4*t^8.6)/g1^2 + (2*g2*g3^8*t^8.6)/g1 + 5*g3^12*t^8.6 + (2*g1*g3^16*t^8.6)/g2 + (2*g1^2*g3^20*t^8.6)/g2^2 + (g1^4*g3^28*t^8.6)/g2^4 + (4*g1*g2^2*t^8.79)/g3^4 + (g2*t^8.79)/(g1^4*g3^3) + (3*g3*t^8.79)/g1^3 + 3*g1^3*g3^4*t^8.79 + (g1^4*g3^8*t^8.79)/g2 + (4*g3^9*t^8.79)/(g1*g2^2) + (g2^2*t^8.98)/(g1^2*g3^15) - (g2*t^8.98)/(g1*g3^11) + (3*t^8.98)/g3^7 - (g1*t^8.98)/(g2*g3^3) + (g1^2*g3*t^8.98)/g2^2 - t^4.28/(g3*y) - t^5.57/(g3^2*y) - (g2*t^6.43)/(g1*g3^2*y) - (g1*g3^6*t^6.43)/(g2*y) - (g2*t^6.85)/(g1*g3^7*y) - (g1*g3*t^6.85)/(g2*y) + (g2^2*t^7.72)/(g1^2*g3^7*y) + (g2*t^7.72)/(g1*g3^3*y) + (2*g3*t^7.72)/y + (g1*g3^5*t^7.72)/(g2*y) + (g1^2*g3^9*t^7.72)/(g2^2*y) - t^8.13/(g3^4*y) + (g2*g3^6*t^8.17)/(g1*y) + (g1*g3^14*t^8.17)/(g2*y) - (g2^2*t^8.58)/(g1^2*g3^3*y) + (2*g2*g3*t^8.58)/(g1*y) + (2*g1*g3^9*t^8.58)/(g2*y) - (g1^2*g3^13*t^8.58)/(g2^2*y) - (t^4.28*y)/g3 - (t^5.57*y)/g3^2 - (g2*t^6.43*y)/(g1*g3^2) - (g1*g3^6*t^6.43*y)/g2 - (g2*t^6.85*y)/(g1*g3^7) - (g1*g3*t^6.85*y)/g2 + (g2^2*t^7.72*y)/(g1^2*g3^7) + (g2*t^7.72*y)/(g1*g3^3) + 2*g3*t^7.72*y + (g1*g3^5*t^7.72*y)/g2 + (g1^2*g3^9*t^7.72*y)/g2^2 - (t^8.13*y)/g3^4 + (g2*g3^6*t^8.17*y)/g1 + (g1*g3^14*t^8.17*y)/g2 - (g2^2*t^8.58*y)/(g1^2*g3^3) + (2*g2*g3*t^8.58*y)/g1 + (2*g1*g3^9*t^8.58*y)/g2 - (g1^2*g3^13*t^8.58*y)/g2^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
61158 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }M_{4}\phi_{1}^{2}q_{1}\tilde{q}_{1}$ | 1.2342 | 1.4933 | 0.8265 | [X:[1.5712], M:[1.1425, 0.8575, 0.8575, 0.7137], q:[0.2144, 0.4993], qb:[0.2144, 0.4993], phi:[0.4288]] | 3*t^2.14 + 3*t^2.57 + t^3. + t^3.43 + t^3.86 + 2*t^4.07 + 7*t^4.28 + 12*t^4.71 + 2*t^4.93 + 3*t^5.14 + 4*t^5.15 + 2*t^5.36 + 7*t^5.57 + 2*t^5.79 + t^5.99 + t^6. - t^4.29/y - t^5.57/y - t^4.29*y - t^5.57*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57638 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ | 1.5367 | 1.8086 | 0.8497 | [X:[], M:[0.6727, 0.674, 0.674], q:[0.4951, 0.4938], qb:[0.4951, 0.4938], phi:[0.337]] | 4*t^2.02 + t^2.96 + 3*t^2.97 + t^3.03 + t^3.97 + 10*t^4.04 + 7*t^4.98 + 13*t^4.99 + t^5.05 + 3*t^5.06 + 4*t^5.46 + 7*t^5.93 + 3*t^5.94 + t^5.99 - t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |