Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61008 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{2}^{2}$ + ${ }q_{2}\tilde{q}_{2}X_{2}$ 1.3456 1.5565 0.8645 [X:[1.25, 1.375], M:[0.875, 1.0, 0.875], q:[0.5625, 0.3125], qb:[0.5625, 0.3125], phi:[0.375]] [X:[[0, 0], [0, 0]], M:[[0, 0], [0, 0], [0, 0]], q:[[-1, 0], [0, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2 {a: 44091/32768, c: 51003/32768, X1: 5/4, X2: 11/8, M1: 7/8, M2: 1, M3: 7/8, q1: 9/16, q2: 5/16, qb1: 9/16, qb2: 5/16, phi1: 3/8}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$ ${}$ -3 4*t^2.62 + t^3. + 3*t^3.75 + 2*t^4.12 + t^4.5 + 2*t^4.69 + 2*t^4.88 + 8*t^5.25 + 2*t^5.44 + 5*t^5.62 + 2*t^5.81 - 3*t^6. + 2*t^6.19 + 10*t^6.38 + 2*t^6.56 + 8*t^6.75 + 3*t^7.12 + 6*t^7.31 + 10*t^7.5 + 2*t^7.69 + 17*t^7.88 + 2*t^8.06 + 15*t^8.25 + 12*t^8.44 - 5*t^8.62 + 4*t^8.81 - t^4.12/y - t^5.25/y - (4*t^6.75)/y - (4*t^7.88)/y + (4*t^8.25)/y + (4*t^8.62)/y - t^4.12*y - t^5.25*y - 4*t^6.75*y - 4*t^7.88*y + 4*t^8.25*y + 4*t^8.62*y 2*t^2.62 + (g1*t^2.62)/g2 + (g2*t^2.62)/g1 + t^3. + t^3.75 + (g1*t^3.75)/g2 + (g2*t^3.75)/g1 + 2*t^4.12 + t^4.5 + t^4.69/(g1*g2^2) + g1*g2^2*t^4.69 + (g1*t^4.88)/g2 + (g2*t^4.88)/g1 + 4*t^5.25 + (g1^2*t^5.25)/g2^2 + (g1*t^5.25)/g2 + (g2*t^5.25)/g1 + (g2^2*t^5.25)/g1^2 + t^5.44/(g1^2*g2) + g1^2*g2*t^5.44 + 3*t^5.62 + (g1*t^5.62)/g2 + (g2*t^5.62)/g1 + t^5.81/(g1*g2^2) + g1*g2^2*t^5.81 - 3*t^6. + t^6.19/g2^3 + g2^3*t^6.19 + 4*t^6.38 + (g1^2*t^6.38)/g2^2 + (2*g1*t^6.38)/g2 + (2*g2*t^6.38)/g1 + (g2^2*t^6.38)/g1^2 + t^6.56/(g1^2*g2) + g1^2*g2*t^6.56 + 4*t^6.75 + (2*g1*t^6.75)/g2 + (2*g2*t^6.75)/g1 + t^6.94/(g1*g2^2) - t^6.94/(g1^2*g2) - g1^2*g2*t^6.94 + g1*g2^2*t^6.94 + t^7.12 + (g1*t^7.12)/g2 + (g2*t^7.12)/g1 + t^7.31/g2^3 + t^7.31/(g1*g2^2) + t^7.31/(g1^2*g2) + g1^2*g2*t^7.31 + g1*g2^2*t^7.31 + g2^3*t^7.31 + 4*t^7.5 + (2*g1^2*t^7.5)/g2^2 + (g1*t^7.5)/g2 + (g2*t^7.5)/g1 + (2*g2^2*t^7.5)/g1^2 + t^7.69/(g1^2*g2) + g1^2*g2*t^7.69 + 5*t^7.88 + (g1^3*t^7.88)/g2^3 + (g1^2*t^7.88)/g2^2 + (4*g1*t^7.88)/g2 + (4*g2*t^7.88)/g1 + (g2^2*t^7.88)/g1^2 + (g2^3*t^7.88)/g1^3 + t^8.06/g1^3 + g1^3*t^8.06 - t^8.06/g2^3 + t^8.06/(g1*g2^2) + g1*g2^2*t^8.06 - g2^3*t^8.06 + 7*t^8.25 + (g1^2*t^8.25)/g2^2 + (3*g1*t^8.25)/g2 + (3*g2*t^8.25)/g1 + (g2^2*t^8.25)/g1^2 + t^8.44/g1^3 + g1^3*t^8.44 + (2*t^8.44)/g2^3 + t^8.44/(g1*g2^2) + (2*t^8.44)/(g1^2*g2) + 2*g1^2*g2*t^8.44 + g1*g2^2*t^8.44 + 2*g2^3*t^8.44 - t^8.62 + (g1^2*t^8.62)/g2^2 - (3*g1*t^8.62)/g2 - (3*g2*t^8.62)/g1 + (g2^2*t^8.62)/g1^2 - t^8.81/g1^3 - g1^3*t^8.81 + (g1*t^8.81)/g2^4 + t^8.81/g2^3 + t^8.81/(g1*g2^2) + g1*g2^2*t^8.81 + g2^3*t^8.81 + (g2^4*t^8.81)/g1 - t^4.12/y - t^5.25/y - (2*t^6.75)/y - (g1*t^6.75)/(g2*y) - (g2*t^6.75)/(g1*y) - (2*t^7.88)/y - (g1*t^7.88)/(g2*y) - (g2*t^7.88)/(g1*y) + (2*g1*t^8.25)/(g2*y) + (2*g2*t^8.25)/(g1*y) + (2*t^8.62)/y + (g1*t^8.62)/(g2*y) + (g2*t^8.62)/(g1*y) - t^4.12*y - t^5.25*y - 2*t^6.75*y - (g1*t^6.75*y)/g2 - (g2*t^6.75*y)/g1 - 2*t^7.88*y - (g1*t^7.88*y)/g2 - (g2*t^7.88*y)/g1 + (2*g1*t^8.25*y)/g2 + (2*g2*t^8.25*y)/g1 + 2*t^8.62*y + (g1*t^8.62*y)/g2 + (g2*t^8.62*y)/g1


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58448 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}^{3}$ 1.4755 1.6867 0.8748 [X:[1.3244], M:[0.9866, 0.7025, 0.9866], q:[0.5067, 0.4798], qb:[0.5067, 0.4798], phi:[0.3378]] t^2.11 + t^2.88 + 4*t^2.96 + 3*t^3.97 + t^4.05 + t^4.22 + t^4.91 + 3*t^4.99 + 5*t^5.07 + 2*t^5.41 + 2*t^5.49 + t^5.76 + 4*t^5.84 + 8*t^5.92 - 4*t^6. - t^4.01/y - t^5.03/y - t^4.01*y - t^5.03*y detail