Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58448 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}^{3}$ 1.4755 1.6867 0.8748 [X:[1.3244], M:[0.9866, 0.7025, 0.9866], q:[0.5067, 0.4798], qb:[0.5067, 0.4798], phi:[0.3378]] [X:[[0, 0, 2]], M:[[0, 0, 3], [0, 0, -8], [0, 0, 3]], q:[[-1, 0, -3], [0, -1, 9]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}$ -4 t^2.11 + t^2.88 + 4*t^2.96 + 3*t^3.97 + t^4.05 + t^4.22 + t^4.91 + 3*t^4.99 + 5*t^5.07 + 2*t^5.41 + 2*t^5.49 + t^5.76 + 4*t^5.84 + 8*t^5.92 - 4*t^6. + t^6.08 + t^6.16 + t^6.32 + 2*t^6.43 + 2*t^6.51 + 3*t^6.85 + 11*t^6.93 + 2*t^7.01 + t^7.09 + 5*t^7.17 + 2*t^7.36 + 2*t^7.52 + 4*t^7.6 + t^7.78 + 6*t^7.87 + 14*t^7.95 + 12*t^8.03 - 5*t^8.11 + t^8.19 + t^8.27 + 2*t^8.29 + 8*t^8.37 + t^8.43 + 2*t^8.45 - 4*t^8.53 + t^8.64 + 4*t^8.72 + 8*t^8.8 + 10*t^8.88 - 10*t^8.96 - t^4.01/y - t^5.03/y - t^6.12/y - t^6.89/y - (4*t^6.97)/y - t^7.13/y - (3*t^7.99)/y + (4*t^8.07)/y - t^8.23/y + (4*t^8.84)/y + (6*t^8.92)/y - t^4.01*y - t^5.03*y - t^6.12*y - t^6.89*y - 4*t^6.97*y - t^7.13*y - 3*t^7.99*y + 4*t^8.07*y - t^8.23*y + 4*t^8.84*y + 6*t^8.92*y t^2.11/g3^8 + g3^9*t^2.88 + (g2*t^2.96)/(g1*g3^3) + 2*g3^3*t^2.96 + (g1*g3^9*t^2.96)/g2 + (g2*t^3.97)/(g1*g3^4) + g3^2*t^3.97 + (g1*g3^8*t^3.97)/g2 + t^4.05/g3^4 + t^4.22/g3^16 + g3^7*t^4.91 + (g2*t^4.99)/(g1*g3^5) + g3*t^4.99 + (g1*g3^7*t^4.99)/g2 + (g2*t^5.07)/(g1*g3^11) + (3*t^5.07)/g3^5 + (g1*g3*t^5.07)/g2 + (g1*g2^2*t^5.41)/g3 + (g3^14*t^5.41)/(g1*g2^2) + (g1^2*g2*t^5.49)/g3 + (g3^2*t^5.49)/(g1^2*g2) + g3^18*t^5.76 + (g2*g3^6*t^5.84)/g1 + 2*g3^12*t^5.84 + (g1*g3^18*t^5.84)/g2 + (g2*t^5.92)/g1 + (g2^2*t^5.92)/(g1^2*g3^6) + 4*g3^6*t^5.92 + (g1*g3^12*t^5.92)/g2 + (g1^2*g3^18*t^5.92)/g2^2 - 4*t^6. + t^6.08/g3^6 + t^6.16/g3^12 + t^6.32/g3^24 + (g1*g2^2*t^6.43)/g3^2 + (g3^13*t^6.43)/(g1*g2^2) + (g1^2*g2*t^6.51)/g3^2 + (g3*t^6.51)/(g1^2*g2) + (g2*g3^5*t^6.85)/g1 + g3^11*t^6.85 + (g1*g3^17*t^6.85)/g2 + (g2^2*t^6.93)/(g1^2*g3^7) + (2*g2*t^6.93)/(g1*g3) + 5*g3^5*t^6.93 + (2*g1*g3^11*t^6.93)/g2 + (g1^2*g3^17*t^6.93)/g2^2 + (g2*t^7.01)/(g1*g3^7) + (g1*g3^5*t^7.01)/g2 + t^7.09/g3^7 + (g2*t^7.17)/(g1*g3^19) + (3*t^7.17)/g3^13 + (g1*t^7.17)/(g2*g3^7) + (g2^3*t^7.36)/g3^3 + (g3^24*t^7.36)/g2^3 + (g1*g2^2*t^7.44)/g3^3 - g1^2*g2*g3^3*t^7.44 - (g3^6*t^7.44)/(g1^2*g2) + (g3^12*t^7.44)/(g1*g2^2) + t^7.52/(g1^2*g2) + (g1^2*g2*t^7.52)/g3^3 + t^7.6/(g1^3*g3^12) + (g1^2*g2*t^7.6)/g3^9 + t^7.6/(g1^2*g2*g3^6) + (g1^3*t^7.6)/g3^3 + g3^16*t^7.78 + (2*g2*g3^4*t^7.87)/g1 + 2*g3^10*t^7.87 + (2*g1*g3^16*t^7.87)/g2 + (2*g2^2*t^7.95)/(g1^2*g3^8) + (2*g2*t^7.95)/(g1*g3^2) + 6*g3^4*t^7.95 + (2*g1*g3^10*t^7.95)/g2 + (2*g1^2*g3^16*t^7.95)/g2^2 + (g2^2*t^8.03)/(g1^2*g3^14) + (3*g2*t^8.03)/(g1*g3^8) + (4*t^8.03)/g3^2 + (3*g1*g3^4*t^8.03)/g2 + (g1^2*g3^10*t^8.03)/g2^2 - (g2*t^8.11)/(g1*g3^14) - (3*t^8.11)/g3^8 - (g1*t^8.11)/(g2*g3^2) + t^8.19/g3^14 + t^8.27/g3^20 + g1*g2^2*g3^8*t^8.29 + (g3^23*t^8.29)/(g1*g2^2) + (g2^3*t^8.37)/g3^4 + g1*g2^2*g3^2*t^8.37 + 2*g1^2*g2*g3^8*t^8.37 + (2*g3^11*t^8.37)/(g1^2*g2) + (g3^17*t^8.37)/(g1*g2^2) + (g3^23*t^8.37)/g2^3 + t^8.43/g3^32 - (g2^3*t^8.45)/g3^10 + (g1*g2^2*t^8.45)/g3^4 + t^8.45/(g1^3*g3) + g1^3*g3^8*t^8.45 + (g3^11*t^8.45)/(g1*g2^2) - (g3^17*t^8.45)/g2^3 - (g1*g2^2*t^8.53)/g3^10 - t^8.53/(g1^3*g3^7) - g1^3*g3^2*t^8.53 - (g3^5*t^8.53)/(g1*g2^2) + g3^27*t^8.64 + (g2*g3^15*t^8.72)/g1 + 2*g3^21*t^8.72 + (g1*g3^27*t^8.72)/g2 + (g2^2*g3^3*t^8.8)/g1^2 + (g2*g3^9*t^8.8)/g1 + 4*g3^15*t^8.8 + (g1*g3^21*t^8.8)/g2 + (g1^2*g3^27*t^8.8)/g2^2 + (g2^3*t^8.88)/(g1^3*g3^9) + (g2^2*t^8.88)/(g1^2*g3^3) + (3*g2*g3^3*t^8.88)/g1 + (3*g1*g3^15*t^8.88)/g2 + (g1^2*g3^21*t^8.88)/g2^2 + (g1^3*g3^27*t^8.88)/g2^3 + (g2^2*t^8.96)/(g1^2*g3^9) - (4*g2*t^8.96)/(g1*g3^3) - 4*g3^3*t^8.96 - (4*g1*g3^9*t^8.96)/g2 + (g1^2*g3^15*t^8.96)/g2^2 - t^4.01/(g3*y) - t^5.03/(g3^2*y) - t^6.12/(g3^9*y) - (g3^8*t^6.89)/y - (g2*t^6.97)/(g1*g3^4*y) - (2*g3^2*t^6.97)/y - (g1*g3^8*t^6.97)/(g2*y) - t^7.13/(g3^10*y) - (g2*t^7.99)/(g1*g3^5*y) - (g3*t^7.99)/y - (g1*g3^7*t^7.99)/(g2*y) + (g2*t^8.07)/(g1*g3^11*y) + (2*t^8.07)/(g3^5*y) + (g1*g3*t^8.07)/(g2*y) - t^8.23/(g3^17*y) + (g2*g3^6*t^8.84)/(g1*y) + (2*g3^12*t^8.84)/y + (g1*g3^18*t^8.84)/(g2*y) + (2*g2*t^8.92)/(g1*y) + (2*g3^6*t^8.92)/y + (2*g1*g3^12*t^8.92)/(g2*y) - (t^4.01*y)/g3 - (t^5.03*y)/g3^2 - (t^6.12*y)/g3^9 - g3^8*t^6.89*y - (g2*t^6.97*y)/(g1*g3^4) - 2*g3^2*t^6.97*y - (g1*g3^8*t^6.97*y)/g2 - (t^7.13*y)/g3^10 - (g2*t^7.99*y)/(g1*g3^5) - g3*t^7.99*y - (g1*g3^7*t^7.99*y)/g2 + (g2*t^8.07*y)/(g1*g3^11) + (2*t^8.07*y)/g3^5 + (g1*g3*t^8.07*y)/g2 - (t^8.23*y)/g3^17 + (g2*g3^6*t^8.84*y)/g1 + 2*g3^12*t^8.84*y + (g1*g3^18*t^8.84*y)/g2 + (2*g2*t^8.92*y)/g1 + 2*g3^6*t^8.92*y + (2*g1*g3^12*t^8.92*y)/g2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
61008 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{2}^{2}$ + ${ }q_{2}\tilde{q}_{2}X_{2}$ 1.3456 1.5565 0.8645 [X:[1.25, 1.375], M:[0.875, 1.0, 0.875], q:[0.5625, 0.3125], qb:[0.5625, 0.3125], phi:[0.375]] 4*t^2.62 + t^3. + 3*t^3.75 + 2*t^4.12 + t^4.5 + 2*t^4.69 + 2*t^4.88 + 8*t^5.25 + 2*t^5.44 + 5*t^5.62 + 2*t^5.81 - 3*t^6. - t^4.12/y - t^5.25/y - t^4.12*y - t^5.25*y detail {a: 44091/32768, c: 51003/32768, X1: 5/4, X2: 11/8, M1: 7/8, M2: 1, M3: 7/8, q1: 9/16, q2: 5/16, qb1: 9/16, qb2: 5/16, phi1: 3/8}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57373 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ 1.4745 1.684 0.8756 [X:[1.328], M:[0.9919, 0.6882], q:[0.504, 0.4879], qb:[0.504, 0.4879], phi:[0.336]] t^2.065 + t^2.927 + 3*t^2.976 + t^3.024 + 3*t^3.984 + t^4.032 + t^4.129 + t^4.943 + 3*t^4.992 + 4*t^5.04 + t^5.089 + 2*t^5.448 + 2*t^5.496 + t^5.855 + 3*t^5.903 + 5*t^5.952 - t^6. - t^4.008/y - t^5.016/y - t^4.008*y - t^5.016*y detail