Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
60997 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{2}$ 1.3489 1.6226 0.8313 [X:[], M:[0.7103, 0.7103, 1.2], q:[0.5932, 0.4137], qb:[0.2966, 0.2966], phi:[0.4]] [X:[], M:[[-2, -1], [-1, -2], [0, 0]], q:[[1, 1], [-2, -2]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}\phi_{1}^{3}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${}\phi_{1}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{3}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ 2}\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}^{3}$ 6 4*t^2.13 + 2*t^2.67 + 2*t^3.33 + 2*t^3.6 + 2*t^3.87 + 10*t^4.26 + 2*t^4.53 + 8*t^4.8 + 4*t^5.07 + 3*t^5.34 + 8*t^5.46 + 8*t^5.73 + 6*t^6. + 8*t^6.27 + 20*t^6.39 + 2*t^6.54 + 11*t^6.66 + 22*t^6.93 + 17*t^7.2 + t^7.32 + 12*t^7.47 + 20*t^7.59 + 5*t^7.74 + 24*t^7.86 + 4*t^8.01 + 12*t^8.13 + 32*t^8.4 + 35*t^8.52 + 2*t^8.67 + 30*t^8.79 + 14*t^8.94 - t^4.2/y - t^5.4/y - (4*t^6.33)/y - (2*t^6.87)/y + (6*t^7.26)/y - (4*t^7.53)/y + (7*t^7.8)/y + t^8.34/y - (2*t^8.46)/y + (6*t^8.73)/y - t^4.2*y - t^5.4*y - 4*t^6.33*y - 2*t^6.87*y + 6*t^7.26*y - 4*t^7.53*y + 7*t^7.8*y + t^8.34*y - 2*t^8.46*y + 6*t^8.73*y (2*t^2.13)/(g1*g2^2) + (2*t^2.13)/(g1^2*g2) + g1^2*g2*t^2.67 + g1*g2^2*t^2.67 + t^3.33/(g1*g2^2) + t^3.33/(g1^2*g2) + 2*t^3.6 + g1^2*g2*t^3.87 + g1*g2^2*t^3.87 + (3*t^4.26)/(g1^2*g2^4) + (4*t^4.26)/(g1^3*g2^3) + (3*t^4.26)/(g1^4*g2^2) + t^4.53/(g1*g2^2) + t^4.53/(g1^2*g2) + 4*t^4.8 + (2*g1*t^4.8)/g2 + (2*g2*t^4.8)/g1 + 2*g1^2*g2*t^5.07 + 2*g1*g2^2*t^5.07 + g1^4*g2^2*t^5.34 + g1^3*g2^3*t^5.34 + g1^2*g2^4*t^5.34 + (2*t^5.46)/(g1^2*g2^4) + (4*t^5.46)/(g1^3*g2^3) + (2*t^5.46)/(g1^4*g2^2) + (4*t^5.73)/(g1*g2^2) + (4*t^5.73)/(g1^2*g2) + 2*t^6. + (2*g1*t^6.)/g2 + (2*g2*t^6.)/g1 + g1^3*t^6.27 + 3*g1^2*g2*t^6.27 + 3*g1*g2^2*t^6.27 + g2^3*t^6.27 + (4*t^6.39)/(g1^3*g2^6) + (6*t^6.39)/(g1^4*g2^5) + (6*t^6.39)/(g1^5*g2^4) + (4*t^6.39)/(g1^6*g2^3) + g1^4*g2^2*t^6.54 + g1^2*g2^4*t^6.54 + (3*t^6.66)/(g1^2*g2^4) + (5*t^6.66)/(g1^3*g2^3) + (3*t^6.66)/(g1^4*g2^2) + (3*t^6.93)/g1^3 + (3*t^6.93)/g2^3 + (8*t^6.93)/(g1*g2^2) + (8*t^6.93)/(g1^2*g2) + 9*t^7.2 + (4*g1*t^7.2)/g2 + (4*g2*t^7.2)/g1 + t^7.32/(g1^6*g2^6) + 2*g1^3*t^7.47 + 4*g1^2*g2*t^7.47 + 4*g1*g2^2*t^7.47 + 2*g2^3*t^7.47 + (3*t^7.59)/(g1^3*g2^6) + (7*t^7.59)/(g1^4*g2^5) + (7*t^7.59)/(g1^5*g2^4) + (3*t^7.59)/(g1^6*g2^3) + 2*g1^4*g2^2*t^7.74 + g1^3*g2^3*t^7.74 + 2*g1^2*g2^4*t^7.74 + (7*t^7.86)/(g1^2*g2^4) + (10*t^7.86)/(g1^3*g2^3) + (7*t^7.86)/(g1^4*g2^2) + g1^6*g2^3*t^8.01 + g1^5*g2^4*t^8.01 + g1^4*g2^5*t^8.01 + g1^3*g2^6*t^8.01 + (3*t^8.13)/g1^3 + (3*t^8.13)/g2^3 + (3*t^8.13)/(g1*g2^2) + (3*t^8.13)/(g1^2*g2) + 12*t^8.4 + (2*g1^2*t^8.4)/g2^2 + (8*g1*t^8.4)/g2 + (8*g2*t^8.4)/g1 + (2*g2^2*t^8.4)/g1^2 + (5*t^8.52)/(g1^4*g2^8) + (8*t^8.52)/(g1^5*g2^7) + (9*t^8.52)/(g1^6*g2^6) + (8*t^8.52)/(g1^7*g2^5) + (5*t^8.52)/(g1^8*g2^4) + g1^3*t^8.67 + g2^3*t^8.67 + (5*t^8.79)/(g1^3*g2^6) + (10*t^8.79)/(g1^4*g2^5) + (10*t^8.79)/(g1^5*g2^4) + (5*t^8.79)/(g1^6*g2^3) + g1^5*g2*t^8.94 + 4*g1^4*g2^2*t^8.94 + 4*g1^3*g2^3*t^8.94 + 4*g1^2*g2^4*t^8.94 + g1*g2^5*t^8.94 - t^4.2/y - t^5.4/y - (2*t^6.33)/(g1*g2^2*y) - (2*t^6.33)/(g1^2*g2*y) - (g1^2*g2*t^6.87)/y - (g1*g2^2*t^6.87)/y + t^7.26/(g1^2*g2^4*y) + (4*t^7.26)/(g1^3*g2^3*y) + t^7.26/(g1^4*g2^2*y) - (2*t^7.53)/(g1*g2^2*y) - (2*t^7.53)/(g1^2*g2*y) + (3*t^7.8)/y + (2*g1*t^7.8)/(g2*y) + (2*g2*t^7.8)/(g1*y) + (g1^3*g2^3*t^8.34)/y - t^8.46/(g1^2*g2^4*y) - t^8.46/(g1^4*g2^2*y) + (3*t^8.73)/(g1*g2^2*y) + (3*t^8.73)/(g1^2*g2*y) - t^4.2*y - t^5.4*y - (2*t^6.33*y)/(g1*g2^2) - (2*t^6.33*y)/(g1^2*g2) - g1^2*g2*t^6.87*y - g1*g2^2*t^6.87*y + (t^7.26*y)/(g1^2*g2^4) + (4*t^7.26*y)/(g1^3*g2^3) + (t^7.26*y)/(g1^4*g2^2) - (2*t^7.53*y)/(g1*g2^2) - (2*t^7.53*y)/(g1^2*g2) + 3*t^7.8*y + (2*g1*t^7.8*y)/g2 + (2*g2*t^7.8*y)/g1 + g1^3*g2^3*t^8.34*y - (t^8.46*y)/(g1^2*g2^4) - (t^8.46*y)/(g1^4*g2^2) + (3*t^8.73*y)/(g1*g2^2) + (3*t^8.73*y)/(g1^2*g2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58395 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ 1.3654 1.6516 0.8267 [X:[], M:[0.7103, 0.7103], q:[0.5932, 0.4137], qb:[0.2966, 0.2966], phi:[0.4]] 4*t^2.13 + t^2.4 + 2*t^2.67 + 2*t^3.33 + t^3.6 + 2*t^3.87 + 10*t^4.26 + 6*t^4.53 + 9*t^4.8 + 6*t^5.07 + 3*t^5.34 + 8*t^5.46 + 6*t^5.73 + 7*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail