Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58395 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ 1.3654 1.6516 0.8267 [X:[], M:[0.7103, 0.7103], q:[0.5932, 0.4137], qb:[0.2966, 0.2966], phi:[0.4]] [X:[], M:[[-2, -1], [-1, -2]], q:[[1, 1], [-2, -2]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${}\phi_{1}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{3}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ 2}\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}^{3}$ 7 4*t^2.13 + t^2.4 + 2*t^2.67 + 2*t^3.33 + t^3.6 + 2*t^3.87 + 10*t^4.26 + 6*t^4.53 + 9*t^4.8 + 6*t^5.07 + 3*t^5.34 + 8*t^5.46 + 6*t^5.73 + 7*t^6. + 8*t^6.27 + 20*t^6.39 + 2*t^6.54 + 21*t^6.66 + 26*t^6.93 + 24*t^7.2 + t^7.32 + 16*t^7.47 + 20*t^7.59 + 8*t^7.74 + 22*t^7.86 + 4*t^8.01 + 16*t^8.13 + 31*t^8.4 + 35*t^8.52 + 6*t^8.67 + 50*t^8.79 + 13*t^8.94 - t^4.2/y - t^5.4/y - (4*t^6.33)/y - t^6.6/y - (2*t^6.87)/y + (6*t^7.26)/y + (7*t^7.8)/y + (2*t^8.07)/y + t^8.34/y - (2*t^8.46)/y - t^4.2*y - t^5.4*y - 4*t^6.33*y - t^6.6*y - 2*t^6.87*y + 6*t^7.26*y + 7*t^7.8*y + 2*t^8.07*y + t^8.34*y - 2*t^8.46*y (2*t^2.13)/(g1*g2^2) + (2*t^2.13)/(g1^2*g2) + t^2.4 + g1^2*g2*t^2.67 + g1*g2^2*t^2.67 + t^3.33/(g1*g2^2) + t^3.33/(g1^2*g2) + t^3.6 + g1^2*g2*t^3.87 + g1*g2^2*t^3.87 + (3*t^4.26)/(g1^2*g2^4) + (4*t^4.26)/(g1^3*g2^3) + (3*t^4.26)/(g1^4*g2^2) + (3*t^4.53)/(g1*g2^2) + (3*t^4.53)/(g1^2*g2) + 5*t^4.8 + (2*g1*t^4.8)/g2 + (2*g2*t^4.8)/g1 + 3*g1^2*g2*t^5.07 + 3*g1*g2^2*t^5.07 + g1^4*g2^2*t^5.34 + g1^3*g2^3*t^5.34 + g1^2*g2^4*t^5.34 + (2*t^5.46)/(g1^2*g2^4) + (4*t^5.46)/(g1^3*g2^3) + (2*t^5.46)/(g1^4*g2^2) + (3*t^5.73)/(g1*g2^2) + (3*t^5.73)/(g1^2*g2) + 3*t^6. + (2*g1*t^6.)/g2 + (2*g2*t^6.)/g1 + g1^3*t^6.27 + 3*g1^2*g2*t^6.27 + 3*g1*g2^2*t^6.27 + g2^3*t^6.27 + (4*t^6.39)/(g1^3*g2^6) + (6*t^6.39)/(g1^4*g2^5) + (6*t^6.39)/(g1^5*g2^4) + (4*t^6.39)/(g1^6*g2^3) + g1^4*g2^2*t^6.54 + g1^2*g2^4*t^6.54 + (6*t^6.66)/(g1^2*g2^4) + (9*t^6.66)/(g1^3*g2^3) + (6*t^6.66)/(g1^4*g2^2) + (3*t^6.93)/g1^3 + (3*t^6.93)/g2^3 + (10*t^6.93)/(g1*g2^2) + (10*t^6.93)/(g1^2*g2) + 12*t^7.2 + (6*g1*t^7.2)/g2 + (6*g2*t^7.2)/g1 + t^7.32/(g1^6*g2^6) + 2*g1^3*t^7.47 + 6*g1^2*g2*t^7.47 + 6*g1*g2^2*t^7.47 + 2*g2^3*t^7.47 + (3*t^7.59)/(g1^3*g2^6) + (7*t^7.59)/(g1^4*g2^5) + (7*t^7.59)/(g1^5*g2^4) + (3*t^7.59)/(g1^6*g2^3) + 3*g1^4*g2^2*t^7.74 + 2*g1^3*g2^3*t^7.74 + 3*g1^2*g2^4*t^7.74 + (6*t^7.86)/(g1^2*g2^4) + (10*t^7.86)/(g1^3*g2^3) + (6*t^7.86)/(g1^4*g2^2) + g1^6*g2^3*t^8.01 + g1^5*g2^4*t^8.01 + g1^4*g2^5*t^8.01 + g1^3*g2^6*t^8.01 + (3*t^8.13)/g1^3 + (3*t^8.13)/g2^3 + (5*t^8.13)/(g1*g2^2) + (5*t^8.13)/(g1^2*g2) + 11*t^8.4 + (2*g1^2*t^8.4)/g2^2 + (8*g1*t^8.4)/g2 + (8*g2*t^8.4)/g1 + (2*g2^2*t^8.4)/g1^2 + (5*t^8.52)/(g1^4*g2^8) + (8*t^8.52)/(g1^5*g2^7) + (9*t^8.52)/(g1^6*g2^6) + (8*t^8.52)/(g1^7*g2^5) + (5*t^8.52)/(g1^8*g2^4) + 2*g1^3*t^8.67 + g1^2*g2*t^8.67 + g1*g2^2*t^8.67 + 2*g2^3*t^8.67 + (9*t^8.79)/(g1^3*g2^6) + (16*t^8.79)/(g1^4*g2^5) + (16*t^8.79)/(g1^5*g2^4) + (9*t^8.79)/(g1^6*g2^3) + g1^5*g2*t^8.94 + 4*g1^4*g2^2*t^8.94 + 3*g1^3*g2^3*t^8.94 + 4*g1^2*g2^4*t^8.94 + g1*g2^5*t^8.94 - t^4.2/y - t^5.4/y - (2*t^6.33)/(g1*g2^2*y) - (2*t^6.33)/(g1^2*g2*y) - t^6.6/y - (g1^2*g2*t^6.87)/y - (g1*g2^2*t^6.87)/y + t^7.26/(g1^2*g2^4*y) + (4*t^7.26)/(g1^3*g2^3*y) + t^7.26/(g1^4*g2^2*y) + (3*t^7.8)/y + (2*g1*t^7.8)/(g2*y) + (2*g2*t^7.8)/(g1*y) + (g1^2*g2*t^8.07)/y + (g1*g2^2*t^8.07)/y + (g1^3*g2^3*t^8.34)/y - t^8.46/(g1^2*g2^4*y) - t^8.46/(g1^4*g2^2*y) - t^4.2*y - t^5.4*y - (2*t^6.33*y)/(g1*g2^2) - (2*t^6.33*y)/(g1^2*g2) - t^6.6*y - g1^2*g2*t^6.87*y - g1*g2^2*t^6.87*y + (t^7.26*y)/(g1^2*g2^4) + (4*t^7.26*y)/(g1^3*g2^3) + (t^7.26*y)/(g1^4*g2^2) + 3*t^7.8*y + (2*g1*t^7.8*y)/g2 + (2*g2*t^7.8*y)/g1 + g1^2*g2*t^8.07*y + g1*g2^2*t^8.07*y + g1^3*g2^3*t^8.34*y - (t^8.46*y)/(g1^2*g2^4) - (t^8.46*y)/(g1^4*g2^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
60997 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{2}$ 1.3489 1.6226 0.8313 [X:[], M:[0.7103, 0.7103, 1.2], q:[0.5932, 0.4137], qb:[0.2966, 0.2966], phi:[0.4]] 4*t^2.13 + 2*t^2.67 + 2*t^3.33 + 2*t^3.6 + 2*t^3.87 + 10*t^4.26 + 2*t^4.53 + 8*t^4.8 + 4*t^5.07 + 3*t^5.34 + 8*t^5.46 + 8*t^5.73 + 6*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57347 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ 1.3452 1.6133 0.8338 [M:[0.7103], q:[0.591, 0.4181], qb:[0.2987, 0.2923], phi:[0.4]] 2*t^2.131 + t^2.15 + t^2.4 + t^2.65 + t^2.669 + t^3.331 + t^3.35 + t^3.6 + 2*t^3.85 + t^3.869 + 3*t^4.262 + 2*t^4.281 + t^4.301 + 3*t^4.531 + 2*t^4.55 + 2*t^4.781 + 4*t^4.8 + t^4.819 + 3*t^5.05 + 3*t^5.069 + t^5.299 + t^5.319 + t^5.338 + 2*t^5.462 + 3*t^5.481 + t^5.501 + 3*t^5.731 + 2*t^5.75 + 4*t^5.981 + 3*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail