Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
60995 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}^{3}$ 1.4963 1.7278 0.866 [X:[1.3245], M:[0.9867, 0.7021, 0.6739, 0.9867], q:[0.5075, 0.4793], qb:[0.5058, 0.4808], phi:[0.3378]] [X:[[0, 0, 2]], M:[[0, 0, 3], [0, 0, -8], [1, -1, 4], [0, 0, 3]], q:[[-1, 0, -3], [0, -1, 9]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{4}$, ${ }q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }M_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ ${}M_{3}X_{1}$ -3 t^2.02 + t^2.11 + t^2.88 + 4*t^2.96 + 2*t^3.97 + t^4.04 + t^4.05 + t^4.13 + t^4.21 + t^4.9 + t^4.91 + 4*t^4.98 + 3*t^4.99 + t^5.06 + 4*t^5.07 + t^5.41 + t^5.42 + t^5.49 + t^5.5 + t^5.76 + 3*t^5.84 + t^5.85 + t^5.91 + 5*t^5.92 + 2*t^5.93 + t^5.99 - 3*t^6. + 2*t^6.07 + t^6.15 + t^6.16 + t^6.23 + t^6.32 + t^6.42 + t^6.43 + t^6.5 + t^6.51 + 2*t^6.85 + 2*t^6.92 + 7*t^6.93 + 4*t^7. + 4*t^7.01 + t^7.02 + t^7.08 + 5*t^7.09 + 4*t^7.17 + t^7.18 + t^7.35 + t^7.37 + t^7.43 + t^7.44 + t^7.51 + 3*t^7.52 + t^7.59 + 2*t^7.6 + t^7.61 + t^7.78 + t^7.79 + 5*t^7.86 + 5*t^7.87 + t^7.93 + 9*t^7.94 + 8*t^7.95 + t^7.96 + t^8.01 + t^8.02 + 6*t^8.03 + t^8.04 + t^8.09 + t^8.1 - 5*t^8.11 + t^8.17 + t^8.18 + t^8.26 + t^8.27 + t^8.29 + t^8.3 + t^8.34 + 4*t^8.37 + 4*t^8.38 + t^8.43 + 3*t^8.45 + t^8.46 - 2*t^8.54 + t^8.64 + 3*t^8.72 + t^8.73 + t^8.79 + 5*t^8.8 + 2*t^8.81 + 3*t^8.87 + 4*t^8.88 + 4*t^8.89 + 6*t^8.95 - 10*t^8.96 - t^4.01/y - t^5.03/y - t^6.04/y - t^6.12/y - t^6.89/y - (3*t^6.97)/y - t^6.98/y - t^7.05/y + t^7.9/y + (2*t^7.98)/y + (3*t^8.07)/y - t^8.14/y - t^8.23/y + (3*t^8.84)/y + t^8.85/y + (3*t^8.92)/y + (2*t^8.93)/y - t^4.01*y - t^5.03*y - t^6.04*y - t^6.12*y - t^6.89*y - 3*t^6.97*y - t^6.98*y - t^7.05*y + t^7.9*y + 2*t^7.98*y + 3*t^8.07*y - t^8.14*y - t^8.23*y + 3*t^8.84*y + t^8.85*y + 3*t^8.92*y + 2*t^8.93*y (g1*g3^4*t^2.02)/g2 + t^2.11/g3^8 + g3^9*t^2.88 + (g2*t^2.96)/(g1*g3^3) + 2*g3^3*t^2.96 + (g1*g3^9*t^2.96)/g2 + g3^2*t^3.97 + (g1*g3^8*t^3.97)/g2 + (g1^2*g3^8*t^4.04)/g2^2 + t^4.05/g3^4 + (g1*t^4.13)/(g2*g3^4) + t^4.21/g3^16 + (g1*g3^13*t^4.9)/g2 + g3^7*t^4.91 + (3*g1*g3^7*t^4.98)/g2 + (g1^2*g3^13*t^4.98)/g2^2 + (g2*t^4.99)/(g1*g3^5) + 2*g3*t^4.99 + (g1*g3*t^5.06)/g2 + (g2*t^5.07)/(g1*g3^11) + (3*t^5.07)/g3^5 + (g3^14*t^5.41)/(g1*g2^2) + (g1*g2^2*t^5.42)/g3 + (g1^2*g2*t^5.49)/g3 + (g3^2*t^5.5)/(g1^2*g2) + g3^18*t^5.76 + 2*g3^12*t^5.84 + (g1*g3^18*t^5.84)/g2 + (g2*g3^6*t^5.85)/g1 + (g1^2*g3^18*t^5.91)/g2^2 + 4*g3^6*t^5.92 + (g1*g3^12*t^5.92)/g2 + (g2*t^5.93)/g1 + (g2^2*t^5.93)/(g1^2*g3^6) + (g1^2*g3^12*t^5.99)/g2^2 - 4*t^6. + (g1*g3^6*t^6.)/g2 + (g1*t^6.07)/g2 + (g1^3*g3^12*t^6.07)/g2^3 - (g2*t^6.08)/(g1*g3^12) + t^6.08/g3^6 + (g1^2*t^6.15)/g2^2 + t^6.16/g3^12 + (g1*t^6.23)/(g2*g3^12) + t^6.32/g3^24 + (g3^13*t^6.42)/(g1*g2^2) + (g1*g2^2*t^6.43)/g3^2 + (g1^2*g2*t^6.5)/g3^2 + (g3*t^6.51)/(g1^2*g2) + g3^11*t^6.85 + (g1*g3^17*t^6.85)/g2 + (2*g1^2*g3^17*t^6.92)/g2^2 + 4*g3^5*t^6.93 + (3*g1*g3^11*t^6.93)/g2 + (3*g1^2*g3^11*t^7.)/g2^2 + (g1^3*g3^17*t^7.)/g2^3 + t^7.01/g3 + (3*g1*g3^5*t^7.01)/g2 + (g2*t^7.02)/(g1*g3^7) + (g1^2*g3^5*t^7.08)/g2^2 + (2*t^7.09)/g3^7 + (3*g1*t^7.09)/(g2*g3) + (3*t^7.17)/g3^13 + (g1*t^7.17)/(g2*g3^7) + (g2*t^7.18)/(g1*g3^19) + (g3^24*t^7.35)/g2^3 + (g2^3*t^7.37)/g3^3 + (g3^18*t^7.43)/g2^3 + (g1*g2^2*t^7.44)/g3^3 - (g3^6*t^7.44)/(g1^2*g2) + (g3^12*t^7.44)/(g1*g2^2) + g1^3*g3^3*t^7.51 + t^7.52/(g1^2*g2) + (g1^2*g2*t^7.52)/g3^3 + (g3^6*t^7.52)/(g1*g2^2) + (g1^3*t^7.59)/g3^3 + (g1^2*g2*t^7.6)/g3^9 + t^7.6/(g1^2*g2*g3^6) + t^7.61/(g1^3*g3^12) + (g1*g3^22*t^7.78)/g2 + g3^16*t^7.79 + (4*g1*g3^16*t^7.86)/g2 + (g1^2*g3^22*t^7.86)/g2^2 + (2*g2*g3^4*t^7.87)/g1 + 3*g3^10*t^7.87 + (g1^3*g3^22*t^7.93)/g2^3 + (6*g1*g3^10*t^7.94)/g2 + (3*g1^2*g3^16*t^7.94)/g2^2 + (2*g2*t^7.95)/(g1*g3^2) + 6*g3^4*t^7.95 + (g2^2*t^7.96)/(g1^2*g3^8) + (g1^3*g3^16*t^8.01)/g2^3 - (g1*g3^4*t^8.02)/g2 + (2*g1^2*g3^10*t^8.02)/g2^2 + (2*g2*t^8.03)/(g1*g3^8) + (4*t^8.03)/g3^2 + (g2^2*t^8.04)/(g1^2*g3^14) + (g1^4*g3^16*t^8.09)/g2^4 + (g1^2*g3^4*t^8.1)/g2^2 - (g2*t^8.11)/(g1*g3^14) - (4*t^8.11)/g3^8 + (g1^3*g3^4*t^8.17)/g2^3 + (g1*t^8.18)/(g2*g3^8) - (g2*t^8.19)/(g1*g3^20) + t^8.19/g3^14 + (g1^2*t^8.26)/(g2^2*g3^8) + t^8.27/g3^20 + (g3^23*t^8.29)/(g1*g2^2) + g1*g2^2*g3^8*t^8.3 + (g1*t^8.34)/(g2*g3^20) + 2*g1^2*g2*g3^8*t^8.37 + (g3^17*t^8.37)/(g1*g2^2) + (g3^23*t^8.37)/g2^3 + (g2^3*t^8.38)/g3^4 + g1*g2^2*g3^2*t^8.38 + (2*g3^11*t^8.38)/(g1^2*g2) + t^8.43/g3^32 + g1^2*g2*g3^2*t^8.45 + g1^3*g3^8*t^8.45 + (g3^11*t^8.45)/(g1*g2^2) - (g2^3*t^8.46)/g3^10 + (g1*g2^2*t^8.46)/g3^4 + t^8.46/(g1^3*g3) - (g1*g2^2*t^8.54)/g3^10 - t^8.54/(g1^3*g3^7) + g3^27*t^8.64 + 2*g3^21*t^8.72 + (g1*g3^27*t^8.72)/g2 + (g2*g3^15*t^8.73)/g1 + (g1^2*g3^27*t^8.79)/g2^2 + 4*g3^15*t^8.8 + (g1*g3^21*t^8.8)/g2 + (g2^2*g3^3*t^8.81)/g1^2 + (g2*g3^9*t^8.81)/g1 + (2*g1^2*g3^21*t^8.87)/g2^2 + (g1^3*g3^27*t^8.87)/g2^3 + (4*g1*g3^15*t^8.88)/g2 + (g2^3*t^8.89)/(g1^3*g3^9) + (g2^2*t^8.89)/(g1^2*g3^3) + (2*g2*g3^3*t^8.89)/g1 + (4*g1^2*g3^15*t^8.95)/g2^2 + (2*g1^3*g3^21*t^8.95)/g2^3 - (5*g2*t^8.96)/(g1*g3^3) - 5*g3^3*t^8.96 - t^4.01/(g3*y) - t^5.03/(g3^2*y) - (g1*g3^3*t^6.04)/(g2*y) - t^6.12/(g3^9*y) - (g3^8*t^6.89)/y - (2*g3^2*t^6.97)/y - (g1*g3^8*t^6.97)/(g2*y) - (g2*t^6.98)/(g1*g3^4*y) - (g1*g3^2*t^7.05)/(g2*y) - t^7.13/(g3^10*y) + (g1*t^7.13)/(g2*g3^4*y) + (g1*g3^13*t^7.9)/(g2*y) + (g1*g3^7*t^7.98)/(g2*y) + (g1^2*g3^13*t^7.98)/(g2^2*y) + (g1*g3*t^8.06)/(g2*y) - (g1^2*g3^7*t^8.06)/(g2^2*y) + (g2*t^8.07)/(g1*g3^11*y) + (2*t^8.07)/(g3^5*y) - (g1*t^8.14)/(g2*g3^5*y) - t^8.23/(g3^17*y) + (2*g3^12*t^8.84)/y + (g1*g3^18*t^8.84)/(g2*y) + (g2*g3^6*t^8.85)/(g1*y) + (2*g3^6*t^8.92)/y + (g1*g3^12*t^8.92)/(g2*y) + (2*g2*t^8.93)/(g1*y) - (t^4.01*y)/g3 - (t^5.03*y)/g3^2 - (g1*g3^3*t^6.04*y)/g2 - (t^6.12*y)/g3^9 - g3^8*t^6.89*y - 2*g3^2*t^6.97*y - (g1*g3^8*t^6.97*y)/g2 - (g2*t^6.98*y)/(g1*g3^4) - (g1*g3^2*t^7.05*y)/g2 - (t^7.13*y)/g3^10 + (g1*t^7.13*y)/(g2*g3^4) + (g1*g3^13*t^7.9*y)/g2 + (g1*g3^7*t^7.98*y)/g2 + (g1^2*g3^13*t^7.98*y)/g2^2 + (g1*g3*t^8.06*y)/g2 - (g1^2*g3^7*t^8.06*y)/g2^2 + (g2*t^8.07*y)/(g1*g3^11) + (2*t^8.07*y)/g3^5 - (g1*t^8.14*y)/(g2*g3^5) - (t^8.23*y)/g3^17 + 2*g3^12*t^8.84*y + (g1*g3^18*t^8.84*y)/g2 + (g2*g3^6*t^8.85*y)/g1 + 2*g3^6*t^8.92*y + (g1*g3^12*t^8.92*y)/g2 + (2*g2*t^8.93*y)/g1


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58449 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ 1.4954 1.7254 0.8667 [X:[1.328], M:[0.992, 0.6879, 0.671], q:[0.5045, 0.4876], qb:[0.5035, 0.4885], phi:[0.336]] t^2.01 + t^2.06 + t^2.93 + t^2.97 + 2*t^2.98 + t^3.02 + 2*t^3.98 + 2*t^4.03 + t^4.08 + t^4.13 + 2*t^4.94 + 6*t^4.99 + 5*t^5.04 + t^5.09 + 2*t^5.45 + t^5.49 + t^5.5 + t^5.86 + 2*t^5.9 + t^5.91 + 4*t^5.95 + t^5.96 + t^5.99 - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail