Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58449 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ 1.4954 1.7254 0.8667 [X:[1.328], M:[0.992, 0.6879, 0.671], q:[0.5045, 0.4876], qb:[0.5035, 0.4885], phi:[0.336]] [X:[[0, 0, 2]], M:[[0, 0, 3], [0, 0, -8], [1, -1, 4]], q:[[-1, 0, -3], [0, -1, 9]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{3}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}X_{1}$ 0 t^2.01 + t^2.06 + t^2.93 + t^2.97 + 2*t^2.98 + t^3.02 + 2*t^3.98 + 2*t^4.03 + t^4.08 + t^4.13 + 2*t^4.94 + 6*t^4.99 + 5*t^5.04 + t^5.09 + 2*t^5.45 + t^5.49 + t^5.5 + t^5.86 + 2*t^5.9 + t^5.91 + 4*t^5.95 + t^5.96 + t^5.99 + t^6.04 + 2*t^6.05 + t^6.09 + t^6.1 + t^6.14 + t^6.19 + t^6.45 + t^6.46 + t^6.5 + t^6.51 + 2*t^6.91 + 2*t^6.95 + 5*t^6.96 + 3*t^7. + 6*t^7.01 + 4*t^7.05 + 3*t^7.06 + 4*t^7.1 + t^7.11 + t^7.15 + t^7.41 + t^7.42 + 2*t^7.46 + 4*t^7.51 + 4*t^7.56 + 2*t^7.87 + t^7.91 + 7*t^7.92 + 3*t^7.96 + 11*t^7.97 + 4*t^8.01 + 6*t^8.02 + t^8.05 + t^8.06 + t^8.1 + 2*t^8.11 + t^8.15 + t^8.16 + t^8.2 + t^8.26 + t^8.37 + t^8.38 + 3*t^8.42 + 3*t^8.43 + 4*t^8.47 + t^8.78 + 2*t^8.83 + t^8.84 + t^8.87 + 3*t^8.88 + t^8.89 + 2*t^8.92 + 3*t^8.93 + t^8.94 + 5*t^8.97 - 2*t^8.98 - t^4.01/y - t^5.02/y - t^6.02/y - t^6.07/y - t^6.94/y - (2*t^6.98)/y - t^6.99/y - (2*t^7.03)/y + t^7.94/y + (2*t^7.99)/y - t^8.03/y + (3*t^8.04)/y - t^8.08/y + t^8.09/y - t^8.14/y + (2*t^8.9)/y + t^8.91/y + (3*t^8.95)/y - t^4.01*y - t^5.02*y - t^6.02*y - t^6.07*y - t^6.94*y - 2*t^6.98*y - t^6.99*y - 2*t^7.03*y + t^7.94*y + 2*t^7.99*y - t^8.03*y + 3*t^8.04*y - t^8.08*y + t^8.09*y - t^8.14*y + 2*t^8.9*y + t^8.91*y + 3*t^8.95*y (g1*g3^4*t^2.01)/g2 + t^2.06/g3^8 + g3^9*t^2.93 + (g1*g3^9*t^2.97)/g2 + (g2*t^2.98)/(g1*g3^3) + g3^3*t^2.98 + t^3.02/g3^3 + g3^2*t^3.98 + (g1*g3^8*t^3.98)/g2 + t^4.03/g3^4 + (g1^2*g3^8*t^4.03)/g2^2 + (g1*t^4.08)/(g2*g3^4) + t^4.13/g3^16 + g3^7*t^4.94 + (g1*g3^13*t^4.94)/g2 + (g2*t^4.99)/(g1*g3^5) + 2*g3*t^4.99 + (2*g1*g3^7*t^4.99)/g2 + (g1^2*g3^13*t^4.99)/g2^2 + (g2*t^5.04)/(g1*g3^11) + (2*t^5.04)/g3^5 + (2*g1*g3*t^5.04)/g2 + t^5.09/g3^11 + (g1*g2^2*t^5.45)/g3 + (g3^14*t^5.45)/(g1*g2^2) + (g1^2*g2*t^5.49)/g3 + (g3^2*t^5.5)/(g1^2*g2) + g3^18*t^5.86 + g3^12*t^5.9 + (g1*g3^18*t^5.9)/g2 + (g2*g3^6*t^5.91)/g1 + 3*g3^6*t^5.95 + (g1^2*g3^18*t^5.95)/g2^2 + (g2^2*t^5.96)/(g1^2*g3^6) + (g1^2*g3^12*t^5.99)/g2^2 - 3*t^6. + (g2*t^6.)/(g1*g3^6) + (2*g1*g3^6*t^6.)/g2 + (g1^3*g3^12*t^6.04)/g2^3 + (g1*t^6.05)/g2 - (g2*t^6.05)/(g1*g3^12) + (2*t^6.05)/g3^6 + (g1^2*t^6.09)/g2^2 + t^6.1/g3^12 + (g1*t^6.14)/(g2*g3^12) + t^6.19/g3^24 + (g3^13*t^6.45)/(g1*g2^2) + (g1*g2^2*t^6.46)/g3^2 + (g1^2*g2*t^6.5)/g3^2 + (g3*t^6.51)/(g1^2*g2) + g3^11*t^6.91 + (g1*g3^17*t^6.91)/g2 + (2*g1^2*g3^17*t^6.95)/g2^2 + 3*g3^5*t^6.96 + (2*g1*g3^11*t^6.96)/g2 + (2*g1^2*g3^11*t^7.)/g2^2 + (g1^3*g3^17*t^7.)/g2^3 + (g2*t^7.01)/(g1*g3^7) + t^7.01/g3 + (4*g1*g3^5*t^7.01)/g2 + (2*g1*t^7.05)/(g2*g3) + (2*g1^2*g3^5*t^7.05)/g2^2 + (3*t^7.06)/g3^7 + (2*t^7.1)/g3^13 + (2*g1*t^7.1)/(g2*g3^7) + (g2*t^7.11)/(g1*g3^19) + t^7.15/g3^19 + (g3^24*t^7.41)/g2^3 + (g2^3*t^7.42)/g3^3 + (g3^12*t^7.46)/(g1*g2^2) + (g3^18*t^7.46)/g2^3 + (g1*g2^2*t^7.47)/g3^3 - (g3^6*t^7.47)/(g1^2*g2) + t^7.51/(g1^2*g2) + (g1^2*g2*t^7.51)/g3^3 + g1^3*g3^3*t^7.51 + (g3^6*t^7.51)/(g1*g2^2) + t^7.56/(g1^3*g3^12) + (g1^2*g2*t^7.56)/g3^9 + t^7.56/(g1^2*g2*g3^6) + (g1^3*t^7.56)/g3^3 + g3^16*t^7.87 + (g1*g3^22*t^7.87)/g2 + (g1^2*g3^22*t^7.91)/g2^2 + (2*g2*g3^4*t^7.92)/g1 + 2*g3^10*t^7.92 + (3*g1*g3^16*t^7.92)/g2 + (2*g1^2*g3^16*t^7.96)/g2^2 + (g1^3*g3^22*t^7.96)/g2^3 + (g2^2*t^7.97)/(g1^2*g3^8) + (g2*t^7.97)/(g1*g3^2) + 5*g3^4*t^7.97 + (4*g1*g3^10*t^7.97)/g2 + (3*g1^2*g3^10*t^8.01)/g2^2 + (g1^3*g3^16*t^8.01)/g2^3 + (g2^2*t^8.02)/(g1^2*g3^14) + (2*g2*t^8.02)/(g1*g3^8) + (3*t^8.02)/g3^2 + (g1^4*g3^16*t^8.05)/g2^4 - (2*t^8.06)/g3^8 + (2*g1*t^8.06)/(g2*g3^2) + (g1^2*g3^4*t^8.06)/g2^2 + (g1^3*g3^4*t^8.1)/g2^3 - (g2*t^8.11)/(g1*g3^20) + (2*t^8.11)/g3^14 + (g1*t^8.11)/(g2*g3^8) + (g1^2*t^8.15)/(g2^2*g3^8) + t^8.16/g3^20 + (g1*t^8.2)/(g2*g3^20) + t^8.26/g3^32 + (g3^23*t^8.37)/(g1*g2^2) + g1*g2^2*g3^8*t^8.38 + 2*g1^2*g2*g3^8*t^8.42 + (g3^23*t^8.42)/g2^3 + (g2^3*t^8.43)/g3^4 + (2*g3^11*t^8.43)/(g1^2*g2) + (2*g1*g2^2*t^8.47)/g3^4 - (g3^5*t^8.47)/(g1^2*g2) + g1^3*g3^8*t^8.47 + (2*g3^11*t^8.47)/(g1*g2^2) - (g2^3*t^8.48)/g3^10 + t^8.48/(g1^3*g3) - (g1*g2^2*t^8.52)/g3^10 - t^8.52/(g1^3*g3^7) + (g1^2*g2*t^8.52)/g3^4 + t^8.52/(g1^2*g2*g3) + g3^27*t^8.78 + g3^21*t^8.83 + (g1*g3^27*t^8.83)/g2 + (g2*g3^15*t^8.84)/g1 + (g1^2*g3^27*t^8.87)/g2^2 + 3*g3^15*t^8.88 + (g2^2*g3^3*t^8.89)/g1^2 + (g1^2*g3^21*t^8.92)/g2^2 + (g1^3*g3^27*t^8.92)/g2^3 + (2*g2*g3^3*t^8.93)/g1 - 3*g3^9*t^8.93 + (4*g1*g3^15*t^8.93)/g2 + (g2^3*t^8.94)/(g1^3*g3^9) - (g1*g3^9*t^8.97)/g2 + (4*g1^2*g3^15*t^8.97)/g2^2 + (2*g1^3*g3^21*t^8.97)/g2^3 + (g2^2*t^8.98)/(g1^2*g3^9) - (5*g2*t^8.98)/(g1*g3^3) + 2*g3^3*t^8.98 - t^4.01/(g3*y) - t^5.02/(g3^2*y) - (g1*g3^3*t^6.02)/(g2*y) - t^6.07/(g3^9*y) - (g3^8*t^6.94)/y - (g3^2*t^6.98)/y - (g1*g3^8*t^6.98)/(g2*y) - (g2*t^6.99)/(g1*g3^4*y) - t^7.03/(g3^4*y) - (g1*g3^2*t^7.03)/(g2*y) - t^7.08/(g3^10*y) + (g1*t^7.08)/(g2*g3^4*y) + (g1*g3^13*t^7.94)/(g2*y) + (g3*t^7.99)/y + (g1^2*g3^13*t^7.99)/(g2^2*y) - (g1^2*g3^7*t^8.03)/(g2^2*y) + (g2*t^8.04)/(g1*g3^11*y) + (2*g1*g3*t^8.04)/(g2*y) - (g1*t^8.08)/(g2*g3^5*y) + t^8.09/(g3^11*y) - t^8.14/(g3^17*y) + (g3^12*t^8.9)/y + (g1*g3^18*t^8.9)/(g2*y) + (g2*g3^6*t^8.91)/(g1*y) + (g2*t^8.95)/(g1*y) + (2*g3^6*t^8.95)/y - (t^4.01*y)/g3 - (t^5.02*y)/g3^2 - (g1*g3^3*t^6.02*y)/g2 - (t^6.07*y)/g3^9 - g3^8*t^6.94*y - g3^2*t^6.98*y - (g1*g3^8*t^6.98*y)/g2 - (g2*t^6.99*y)/(g1*g3^4) - (t^7.03*y)/g3^4 - (g1*g3^2*t^7.03*y)/g2 - (t^7.08*y)/g3^10 + (g1*t^7.08*y)/(g2*g3^4) + (g1*g3^13*t^7.94*y)/g2 + g3*t^7.99*y + (g1^2*g3^13*t^7.99*y)/g2^2 - (g1^2*g3^7*t^8.03*y)/g2^2 + (g2*t^8.04*y)/(g1*g3^11) + (2*g1*g3*t^8.04*y)/g2 - (g1*t^8.08*y)/(g2*g3^5) + (t^8.09*y)/g3^11 - (t^8.14*y)/g3^17 + g3^12*t^8.9*y + (g1*g3^18*t^8.9*y)/g2 + (g2*g3^6*t^8.91*y)/g1 + (g2*t^8.95*y)/g1 + 2*g3^6*t^8.95*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
61135 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{2}^{2}$ + ${ }q_{2}\tilde{q}_{2}X_{2}$ 1.3537 1.5733 0.8604 [X:[1.25, 1.375], M:[0.875, 1.0, 0.7369], q:[0.5705, 0.3074], qb:[0.5545, 0.3176], phi:[0.375]] t^2.21 + t^2.59 + t^2.62 + t^2.66 + t^3. + t^3.38 + t^3.71 + t^3.75 + 2*t^4.12 + t^4.42 + t^4.5 + t^4.68 + t^4.69 + t^4.8 + 2*t^4.84 + t^4.87 + t^4.91 + t^5.17 + t^5.21 + 2*t^5.25 + t^5.33 + t^5.4 + t^5.47 + 2*t^5.59 + 2*t^5.62 + t^5.66 + t^5.81 + t^5.82 + t^5.92 + 2*t^5.96 - 2*t^6. - t^4.12/y - t^5.25/y - t^4.12*y - t^5.25*y detail
60995 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}^{3}$ 1.4963 1.7278 0.866 [X:[1.3245], M:[0.9867, 0.7021, 0.6739, 0.9867], q:[0.5075, 0.4793], qb:[0.5058, 0.4808], phi:[0.3378]] t^2.02 + t^2.11 + t^2.88 + 4*t^2.96 + 2*t^3.97 + t^4.04 + t^4.05 + t^4.13 + t^4.21 + t^4.9 + t^4.91 + 4*t^4.98 + 3*t^4.99 + t^5.06 + 4*t^5.07 + t^5.41 + t^5.42 + t^5.49 + t^5.5 + t^5.76 + 3*t^5.84 + t^5.85 + t^5.91 + 5*t^5.92 + 2*t^5.93 + t^5.99 - 3*t^6. - t^4.01/y - t^5.03/y - t^4.01*y - t^5.03*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57373 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ 1.4745 1.684 0.8756 [X:[1.328], M:[0.9919, 0.6882], q:[0.504, 0.4879], qb:[0.504, 0.4879], phi:[0.336]] t^2.065 + t^2.927 + 3*t^2.976 + t^3.024 + 3*t^3.984 + t^4.032 + t^4.129 + t^4.943 + 3*t^4.992 + 4*t^5.04 + t^5.089 + 2*t^5.448 + 2*t^5.496 + t^5.855 + 3*t^5.903 + 5*t^5.952 - t^6. - t^4.008/y - t^5.016/y - t^4.008*y - t^5.016*y detail