Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
60979 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ + ${ }q_{2}\tilde{q}_{1}X_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ | 1.194 | 1.4184 | 0.8418 | [X:[1.5902], M:[0.8686, 0.7706, 1.2784], q:[0.534, 0.2222], qb:[0.1876, 0.5974], phi:[0.4098]] | [X:[[0, 1]], M:[[0, -7], [0, 3], [0, -8]], q:[[-1, 7], [-1, -2]], qb:[[1, 1], [1, 0]], phi:[[0, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{3}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}^{3}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ | ${}$ | -3 | t^2.31 + 3*t^2.46 + t^2.61 + t^3.39 + 2*t^3.69 + t^3.84 + t^4.15 + t^4.16 + 3*t^4.62 + 3*t^4.77 + 8*t^4.92 + 2*t^5.06 + t^5.1 + t^5.21 + 3*t^5.38 + t^5.39 + t^5.69 + t^5.71 + 4*t^5.85 - 3*t^6. + 7*t^6.15 + 4*t^6.29 + t^6.33 + t^6.44 + t^6.46 + 5*t^6.61 + 4*t^6.62 - t^6.75 + t^6.79 + t^6.94 + 10*t^7.08 + 4*t^7.23 + 18*t^7.38 + t^7.41 + 6*t^7.52 + t^7.54 + 4*t^7.56 + 3*t^7.67 - t^7.69 - 2*t^7.71 + t^7.82 + 10*t^7.84 + 4*t^7.85 + t^7.98 + 3*t^8.02 + 3*t^8.15 + t^8.16 + 2*t^8.29 + 10*t^8.31 + t^8.33 - 11*t^8.46 + 2*t^8.49 + 14*t^8.61 - t^8.64 + 9*t^8.75 + 4*t^8.77 + 5*t^8.79 + 3*t^8.9 - 2*t^8.92 - 2*t^8.94 - t^4.23/y - t^5.46/y - t^6.54/y - (2*t^6.69)/y - t^6.84/y + (3*t^7.77)/y + t^7.92/y + t^8.06/y + t^8.71/y + (2*t^8.85)/y - t^4.23*y - t^5.46*y - t^6.54*y - 2*t^6.69*y - t^6.84*y + 3*t^7.77*y + t^7.92*y + t^8.06*y + t^8.71*y + 2*t^8.85*y | g2^3*t^2.31 + (3*t^2.46)/g2^2 + t^2.61/g2^7 + g2^7*t^3.39 + (2*t^3.69)/g2^3 + t^3.84/g2^8 + g1^3*g2*t^4.15 + (g2^2*t^4.16)/g1^3 + 3*g2^6*t^4.62 + 3*g2*t^4.77 + (8*t^4.92)/g2^4 + (2*t^5.06)/g2^9 + (g2^11*t^5.1)/g1^3 + t^5.21/g2^14 + 3*g1^3*t^5.38 + (g2*t^5.39)/g1^3 + t^5.69/(g1^3*g2^9) + g2^10*t^5.71 + 4*g2^5*t^5.85 - 3*t^6. + (7*t^6.15)/g2^5 + (4*t^6.29)/g2^10 + (g2^10*t^6.33)/g1^3 + t^6.44/g2^15 + g1^3*g2^4*t^6.46 + (5*g1^3*t^6.61)/g2 + (4*t^6.62)/g1^3 - (g1^3*t^6.75)/g2^6 + g2^14*t^6.79 + g2^9*t^6.94 + 10*g2^4*t^7.08 + (4*t^7.23)/g2 + (18*t^7.38)/g2^6 + (g2^14*t^7.41)/g1^3 + (6*t^7.52)/g2^11 + g1^3*g2^8*t^7.54 + (4*g2^9*t^7.56)/g1^3 + (3*t^7.67)/g2^16 - g1^3*g2^3*t^7.69 - (2*g2^4*t^7.71)/g1^3 + t^7.82/g2^21 + (10*g1^3*t^7.84)/g2^2 + (4*t^7.85)/(g1^3*g2) + (g1^3*t^7.98)/g2^7 + 3*g2^13*t^8.02 + (3*t^8.15)/(g1^3*g2^11) + g2^8*t^8.16 + t^8.29/(g1^3*g2^16) + g1^6*g2^2*t^8.29 + 10*g2^3*t^8.31 + (g2^4*t^8.33)/g1^6 - (11*t^8.46)/g2^2 + (2*g2^18*t^8.49)/g1^3 + (14*t^8.61)/g2^7 - (g2^13*t^8.64)/g1^3 + (9*t^8.75)/g2^12 + 4*g1^3*g2^7*t^8.77 + (5*g2^8*t^8.79)/g1^3 + (3*t^8.9)/g2^17 - 2*g1^3*g2^2*t^8.92 - (2*g2^3*t^8.94)/g1^3 - t^4.23/(g2*y) - t^5.46/(g2^2*y) - (g2^2*t^6.54)/y - (2*t^6.69)/(g2^3*y) - t^6.84/(g2^8*y) + (3*g2*t^7.77)/y + t^7.92/(g2^4*y) + t^8.06/(g2^9*y) + (g2^10*t^8.71)/y + (2*g2^5*t^8.85)/y - (t^4.23*y)/g2 - (t^5.46*y)/g2^2 - g2^2*t^6.54*y - (2*t^6.69*y)/g2^3 - (t^6.84*y)/g2^8 + 3*g2*t^7.77*y + (t^7.92*y)/g2^4 + (t^8.06*y)/g2^9 + g2^10*t^8.71*y + 2*g2^5*t^8.85*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
60065 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ + ${ }q_{2}\tilde{q}_{1}X_{1}$ | 1.2142 | 1.4566 | 0.8336 | [X:[1.5887], M:[0.8788, 0.7662], q:[0.5244, 0.2257], qb:[0.1856, 0.5968], phi:[0.4113]] | t^2.13 + t^2.3 + 3*t^2.47 + t^2.64 + t^3.36 + 2*t^3.7 + t^4.14 + t^4.16 + t^4.26 + t^4.43 + 6*t^4.6 + 4*t^4.77 + 8*t^4.94 + t^5.06 + 2*t^5.1 + t^5.27 + 3*t^5.37 + t^5.39 + t^5.49 + t^5.66 + t^5.73 + 6*t^5.83 - 3*t^6. - t^4.23/y - t^5.47/y - t^4.23*y - t^5.47*y | detail |