Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
60065 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ + ${ }q_{2}\tilde{q}_{1}X_{1}$ | 1.2142 | 1.4566 | 0.8336 | [X:[1.5887], M:[0.8788, 0.7662], q:[0.5244, 0.2257], qb:[0.1856, 0.5968], phi:[0.4113]] | [X:[[0, 1]], M:[[0, -7], [0, 3]], q:[[-1, 7], [-1, -2]], qb:[[1, 1], [1, 0]], phi:[[0, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{1}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{3}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}^{3}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ | ${}$ | -3 | t^2.13 + t^2.3 + 3*t^2.47 + t^2.64 + t^3.36 + 2*t^3.7 + t^4.14 + t^4.16 + t^4.26 + t^4.43 + 6*t^4.6 + 4*t^4.77 + 8*t^4.94 + t^5.06 + 2*t^5.1 + t^5.27 + 3*t^5.37 + t^5.39 + t^5.49 + t^5.66 + t^5.73 + 6*t^5.83 - 3*t^6. + 6*t^6.17 + t^6.27 + 2*t^6.29 + t^6.34 + t^6.39 + t^6.44 + t^6.56 + 5*t^6.61 + 4*t^6.63 + 7*t^6.73 - t^6.77 + 5*t^6.9 + 18*t^7.06 + t^7.19 + 5*t^7.23 + t^7.36 + 19*t^7.4 + 4*t^7.5 + 5*t^7.52 + 4*t^7.57 + t^7.62 - t^7.67 - 2*t^7.69 + 2*t^7.74 + t^7.79 + 10*t^7.84 + 5*t^7.86 + t^7.91 + 9*t^7.96 - t^8.03 - 2*t^8.13 + 3*t^8.2 + t^8.28 + 16*t^8.3 + t^8.32 + t^8.37 + t^8.4 + 4*t^8.42 - 13*t^8.47 + t^8.52 + t^8.57 - t^8.59 + 11*t^8.64 + t^8.69 + 9*t^8.74 + 9*t^8.76 + t^8.81 + 7*t^8.86 - 3*t^8.9 - 3*t^8.93 + t^8.97 - t^4.23/y - t^5.47/y - t^6.36/y - t^6.53/y - (2*t^6.7)/y - t^6.87/y + t^7.43/y + (2*t^7.6)/y + (4*t^7.77)/y + t^7.94/y + (2*t^8.1)/y + (2*t^8.83)/y - t^4.23*y - t^5.47*y - t^6.36*y - t^6.53*y - 2*t^6.7*y - t^6.87*y + t^7.43*y + 2*t^7.6*y + 4*t^7.77*y + t^7.94*y + 2*t^8.1*y + 2*t^8.83*y | g2^8*t^2.13 + g2^3*t^2.3 + (3*t^2.47)/g2^2 + t^2.64/g2^7 + g2^7*t^3.36 + (2*t^3.7)/g2^3 + g1^3*g2*t^4.14 + (g2^2*t^4.16)/g1^3 + g2^16*t^4.26 + g2^11*t^4.43 + 6*g2^6*t^4.6 + 4*g2*t^4.77 + (8*t^4.94)/g2^4 + (g2^11*t^5.06)/g1^3 + (2*t^5.1)/g2^9 + t^5.27/g2^14 + 3*g1^3*t^5.37 + (g2*t^5.39)/g1^3 + g2^15*t^5.49 + g2^10*t^5.66 + t^5.73/(g1^3*g2^9) + 6*g2^5*t^5.83 - 3*t^6. + (6*t^6.17)/g2^5 + g1^3*g2^9*t^6.27 + (2*g2^10*t^6.29)/g1^3 + t^6.34/g2^10 + g2^24*t^6.39 + g1^3*g2^4*t^6.44 + g2^19*t^6.56 + (5*g1^3*t^6.61)/g2 + (4*t^6.63)/g1^3 + 7*g2^14*t^6.73 - (g1^3*t^6.77)/g2^6 + 5*g2^9*t^6.9 + 18*g2^4*t^7.06 + (g2^19*t^7.19)/g1^3 + (5*t^7.23)/g2 + (g2^14*t^7.36)/g1^3 + (19*t^7.4)/g2^6 + 4*g1^3*g2^8*t^7.5 + (5*g2^9*t^7.52)/g1^3 + (4*t^7.57)/g2^11 + g2^23*t^7.62 - g1^3*g2^3*t^7.67 - (2*g2^4*t^7.69)/g1^3 + (2*t^7.74)/g2^16 + g2^18*t^7.79 + (10*g1^3*t^7.84)/g2^2 + (5*t^7.86)/(g1^3*g2) + t^7.91/g2^21 + 9*g2^13*t^7.96 - t^8.03/(g1^3*g2^6) - 2*g2^8*t^8.13 + (3*t^8.2)/(g1^3*g2^11) + g1^6*g2^2*t^8.28 + 16*g2^3*t^8.3 + (g2^4*t^8.32)/g1^6 + t^8.37/(g1^3*g2^16) + g1^3*g2^17*t^8.4 + (4*g2^18*t^8.42)/g1^3 - (13*t^8.47)/g2^2 + g2^32*t^8.52 + g1^3*g2^12*t^8.57 - (g2^13*t^8.59)/g1^3 + (11*t^8.64)/g2^7 + g2^27*t^8.69 + 9*g1^3*g2^7*t^8.74 + (9*g2^8*t^8.76)/g1^3 + t^8.81/g2^12 + 7*g2^22*t^8.86 - 3*g1^3*g2^2*t^8.9 - (3*g2^3*t^8.93)/g1^3 + t^8.97/g2^17 - t^4.23/(g2*y) - t^5.47/(g2^2*y) - (g2^7*t^6.36)/y - (g2^2*t^6.53)/y - (2*t^6.7)/(g2^3*y) - t^6.87/(g2^8*y) + (g2^11*t^7.43)/y + (2*g2^6*t^7.6)/y + (4*g2*t^7.77)/y + t^7.94/(g2^4*y) + (2*t^8.1)/(g2^9*y) + (2*g2^5*t^8.83)/y - (t^4.23*y)/g2 - (t^5.47*y)/g2^2 - g2^7*t^6.36*y - g2^2*t^6.53*y - (2*t^6.7*y)/g2^3 - (t^6.87*y)/g2^8 + g2^11*t^7.43*y + 2*g2^6*t^7.6*y + 4*g2*t^7.77*y + (t^7.94*y)/g2^4 + (2*t^8.1*y)/g2^9 + 2*g2^5*t^8.83*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
60979 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ + ${ }q_{2}\tilde{q}_{1}X_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ | 1.194 | 1.4184 | 0.8418 | [X:[1.5902], M:[0.8686, 0.7706, 1.2784], q:[0.534, 0.2222], qb:[0.1876, 0.5974], phi:[0.4098]] | t^2.31 + 3*t^2.46 + t^2.61 + t^3.39 + 2*t^3.69 + t^3.84 + t^4.15 + t^4.16 + 3*t^4.62 + 3*t^4.77 + 8*t^4.92 + 2*t^5.06 + t^5.1 + t^5.21 + 3*t^5.38 + t^5.39 + t^5.69 + t^5.71 + 4*t^5.85 - 3*t^6. - t^4.23/y - t^5.46/y - t^4.23*y - t^5.46*y | detail | |
60943 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ + ${ }q_{2}\tilde{q}_{1}X_{1}$ + ${ }\phi_{1}^{3}\tilde{q}_{1}^{3}$ | 1.1842 | 1.4256 | 0.8307 | [X:[1.5911], M:[0.8622, 0.7733], q:[0.4711, 0.1511], qb:[0.2578, 0.6667], phi:[0.4089]] | t^2.19 + t^2.32 + 3*t^2.45 + t^2.59 + t^3.41 + t^3.55 + 2*t^3.68 + t^4.37 + 2*t^4.51 + 6*t^4.64 + 6*t^4.77 + 8*t^4.91 + 3*t^5.04 + t^5.17 + t^5.6 + 3*t^5.73 + 6*t^5.87 + 4*t^6. - t^4.23/y - t^5.45/y - t^4.23*y - t^5.45*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57684 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ | 1.464 | 1.7323 | 0.8451 | [X:[], M:[0.6741, 0.8539], q:[0.4719, 0.382], qb:[0.4719, 0.382], phi:[0.382]] | t^2.02 + 2*t^2.29 + 3*t^2.56 + t^2.83 + t^3.44 + 2*t^3.71 + t^4.04 + 2*t^4.31 + 7*t^4.58 + 11*t^4.85 + 11*t^5.12 + 3*t^5.39 + t^5.46 + t^5.66 + 2*t^5.73 + 5*t^6. - t^4.15/y - t^5.29/y - t^4.15*y - t^5.29*y | detail |