Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
60976 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{1}M_{3}$ + ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ 1.4537 1.6401 0.8864 [X:[1.3393], M:[1.0089, 0.9822, 0.9911], q:[0.4912, 0.5179], qb:[0.4999, 0.5088], phi:[0.3304]] [X:[[0, 2]], M:[[0, 3], [0, -6], [0, -3]], q:[[-1, 0], [-1, 9]], qb:[[1, -3], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{3}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}\phi_{1}^{3}$, ${ }M_{3}^{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }\phi_{1}^{6}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ ${}$ -3 t^2.95 + 2*t^2.97 + t^3. + t^3.08 + t^3.96 + t^3.99 + t^4.02 + t^4.04 + t^4.07 + t^4.96 + t^4.98 + t^5.04 + t^5.06 + t^5.49 + t^5.52 + t^5.54 + t^5.57 + t^5.89 + t^5.92 + 4*t^5.95 + t^5.97 - 3*t^6. + 2*t^6.05 + t^6.16 + t^6.48 + t^6.51 + t^6.53 + t^6.56 + 3*t^6.94 + 3*t^6.96 + t^6.99 + 3*t^7.02 + 4*t^7.04 + t^7.07 + t^7.1 + t^7.12 + t^7.15 + t^7.39 + t^7.47 + t^7.55 + t^7.63 + 4*t^7.93 + 3*t^7.96 + t^7.98 + 3*t^8.01 + 6*t^8.04 + 2*t^8.06 + t^8.09 + 2*t^8.12 + 2*t^8.14 - t^8.41 - t^8.44 - t^8.46 + 2*t^8.47 + t^8.49 + t^8.52 - t^8.54 + 2*t^8.55 + t^8.62 + t^8.65 + t^8.84 + t^8.87 + 2*t^8.89 + 6*t^8.92 + t^8.95 - 5*t^8.97 + t^8.97/y^2 - t^3.99/y - t^4.98/y - t^6.94/y - (2*t^6.96)/y - t^6.99/y - t^7.07/y - t^7.93/y - (2*t^7.96)/y - t^7.98/y - t^8.06/y + (2*t^8.92)/y + t^8.95/y + t^8.97/y - t^3.99*y - t^4.98*y - t^6.94*y - 2*t^6.96*y - t^6.99*y - t^7.07*y - t^7.93*y - 2*t^7.96*y - t^7.98*y - t^8.06*y + 2*t^8.92*y + t^8.95*y + t^8.97*y + t^8.97*y^2 t^2.95/g2^6 + (2*t^2.97)/g2^3 + t^3. + g2^9*t^3.08 + t^3.96/g2^4 + t^3.99/g2 + g2^2*t^4.02 + g2^5*t^4.04 + g2^8*t^4.07 + t^4.96/g2^5 + t^4.98/g2^2 + g2^4*t^5.04 + g2^7*t^5.06 + (g2^8*t^5.49)/g1^3 + (g1^3*t^5.52)/g2^7 + (g1^3*t^5.54)/g2^4 + (g2^17*t^5.57)/g1^3 + t^5.89/g2^12 + t^5.92/g2^9 + (4*t^5.95)/g2^6 + t^5.97/g2^3 - 3*t^6. + 2*g2^6*t^6.05 + g2^18*t^6.16 + (g2^7*t^6.48)/g1^3 + (g1^3*t^6.51)/g2^8 + (g1^3*t^6.53)/g2^5 + (g2^16*t^6.56)/g1^3 + (3*t^6.94)/g2^7 + (3*t^6.96)/g2^4 + t^6.99/g2 + 3*g2^2*t^7.02 + 4*g2^5*t^7.04 + g2^8*t^7.07 + g2^11*t^7.1 + g2^14*t^7.12 + g2^17*t^7.15 + t^7.39/(g1^3*g2^3) + (g2^6*t^7.47)/g1^3 + (g1^3*t^7.5)/g2^9 - (g2^9*t^7.5)/g1^3 + (g1^3*t^7.53)/g2^6 - (g2^12*t^7.53)/g1^3 + (g2^15*t^7.55)/g1^3 + (g2^24*t^7.63)/g1^3 + (4*t^7.93)/g2^8 + (3*t^7.96)/g2^5 + t^7.98/g2^2 + 3*g2*t^8.01 + 6*g2^4*t^8.04 + 2*g2^7*t^8.06 + g2^10*t^8.09 + 2*g2^13*t^8.12 + 2*g2^16*t^8.14 - t^8.41/(g1^3*g2) - (g1^3*t^8.44)/g2^16 - (g1^3*t^8.46)/g2^13 + (2*g2^5*t^8.47)/g1^3 + (2*g1^3*t^8.49)/g2^10 - (g2^8*t^8.49)/g1^3 + (2*g1^3*t^8.52)/g2^7 - (g2^11*t^8.52)/g1^3 - (g1^3*t^8.54)/g2^4 + (2*g2^14*t^8.55)/g1^3 - (g1^3*t^8.57)/g2 + (g2^17*t^8.57)/g1^3 + g1^3*g2^2*t^8.6 - (g2^20*t^8.6)/g1^3 + g1^3*g2^5*t^8.62 + (g2^26*t^8.65)/g1^3 + t^8.84/g2^18 + t^8.87/g2^15 + (2*t^8.89)/g2^12 + (6*t^8.92)/g2^9 + t^8.95/g2^6 - (5*t^8.97)/g2^3 + t^8.97/(g2^3*y^2) - t^3.99/(g2*y) - t^4.98/(g2^2*y) - t^6.94/(g2^7*y) - (2*t^6.96)/(g2^4*y) - t^6.99/(g2*y) - (g2^8*t^7.07)/y - t^7.93/(g2^8*y) - (2*t^7.96)/(g2^5*y) - t^7.98/(g2^2*y) - (g2^7*t^8.06)/y + (2*t^8.92)/(g2^9*y) + t^8.95/(g2^6*y) + t^8.97/(g2^3*y) - (t^3.99*y)/g2 - (t^4.98*y)/g2^2 - (t^6.94*y)/g2^7 - (2*t^6.96*y)/g2^4 - (t^6.99*y)/g2 - g2^8*t^7.07*y - (t^7.93*y)/g2^8 - (2*t^7.96*y)/g2^5 - (t^7.98*y)/g2^2 - g2^7*t^8.06*y + (2*t^8.92*y)/g2^9 + (t^8.95*y)/g2^6 + (t^8.97*y)/g2^3 + (t^8.97*y^2)/g2^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
59490 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{1}M_{3}$ 1.4549 1.6441 0.885 [X:[1.3357], M:[1.0035, 0.9598, 0.9965], q:[0.48, 0.5238], qb:[0.5164, 0.4869], phi:[0.3322]] t^2.88 + t^2.9 + 2*t^2.99 + t^3.03 + t^3.9 + t^3.99 + t^4.01 + t^4.03 + t^4.12 + t^4.89 + t^4.98 + t^5.02 + t^5.11 + t^5.45 + t^5.47 + t^5.56 + t^5.58 + t^5.76 + t^5.78 + t^5.8 + t^5.87 + 2*t^5.89 + t^5.93 + 3*t^5.98 - 4*t^6. - t^4./y - t^4.99/y - t^4.*y - t^4.99*y detail